本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20081 | 2024-08-04 |
DP-site: A dual deep learning-based method for protein-peptide interaction site prediction
2024-Sep, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2024.06.001
PMID:38871095
|
研究论文 | 该文章介绍了一种名为DP-Site的计算框架,用于预测蛋白质-肽相互作用位点 | 提出了一个双重深度学习管道,结合了卷积神经网络和长短期记忆网络,在蛋白质-肽相互作用的预测上优于以往的方法 | 未提及具体的限制因素 | 通过提出DP-Site方法来改进蛋白质-肽相互作用位点的预测 | 主要研究对象是蛋白质和其相互作用的肽 | 计算机视觉 | NA | 深度学习 | 卷积神经网络和长短期记忆网络 | NA | 通过十折交叉验证和独立测试集评估 |
20082 | 2024-08-07 |
Editorial for "Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI"
2024-Sep, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29159
PMID:38009373
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
20083 | 2024-08-04 |
Visceral and Subcutaneous Abdominal Fat Predict Brain Volume Loss at Midlife in 10,001 Individuals
2024-Aug-01, Aging and disease
IF:7.0Q1
DOI:10.14336/AD.2023.0820
PMID:37728587
|
研究论文 | 腹部脂肪与大脑健康日益相关,研究展示了腹部脂肪对大脑容积丧失的预测能力 | 本研究发现内脏脂肪是预测多个大脑区域容积丧失的可调节因素,且提供了年龄和性别调整后的相关性分析 | 仅在健康参与者中进行,可能不适用于有其他健康问题的人群,且未考虑其他潜在影响因素 | 探讨腹部脂肪(内脏和皮下脂肪)对中年人群大脑容积的影响 | 10,001名健康参与者的腹部脂肪和大脑容积数据 | 数字病理学 | NA | 1.5T MRI, 深度学习 | NA | 图像 | 10,001名健康参与者 |
20084 | 2024-08-04 |
Bayesian-Edge system for classification and segmentation of skin lesions in Internet of Medical Things
2024-Aug, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI)
IF:2.0Q3
DOI:10.1111/srt.13878
PMID:39081158
|
研究论文 | 本文介绍了一种结合贝叶斯推断和边缘智能的皮肤病变分割模型 | 该模型集成了贝叶斯推断和边缘智能以提高皮肤病变分割的准确性和效率 | 在运行时分析恶性肿瘤仍然面临挑战,视觉相似性可能导致误判 | 提高皮肤病变的分类和分割精度,从而增强临床决策能力 | 皮肤病变图像的分割与分类 | 数字病理学 | NA | 贝叶斯推断和边缘智能 | NA | 图像 | NA |
20085 | 2024-08-04 |
Prediction of strong coupling in resonant perovskite metasurfaces by deep learning
2024-Aug-01, Optics letters
IF:3.1Q2
DOI:10.1364/OL.529450
PMID:39090923
|
研究论文 | 本文提出了一种深度学习策略,用于模拟共振钙钛矿超表面的强耦合现象 | 提出了一种基于深度学习的全连接神经网络来快速预测共振钙钛矿超表面的传输光谱和耦合现象 | 尚未说明具体的实验验证或实际应用案例 | 旨在提高共振超表面的设计效率 | 研究共振钙钛矿超表面具有强耦合现象的预测 | 机器学习 | NA | 深度学习 | 全连接神经网络 | 光谱数据 | NA |
20086 | 2024-08-04 |
Deep learning-based quantification of total bleeding volume and its association with complications, disability, and death in patients with aneurysmal subarachnoid hemorrhage
2024-Aug-01, Journal of neurosurgery
IF:3.5Q1
DOI:10.3171/2024.1.JNS232280
PMID:38552240
|
研究论文 | 本文研究了动脉瘤性蛛网膜下腔出血(aSAH)患者出血总量与术后并发症、残疾和死亡之间的关系 | 首次应用自动化深度学习技术定量分析aSAH患者的总出血量,并探讨其与临床结果的关联 | 研究仅在单一机构进行,样本数据可能不足以代表所有aSAH患者 | 探索aSAH患者的出血严重程度与术后并发症和长期功能结果之间的关系 | 2018年至2021年期间在单一机构住院的动脉瘤性蛛网膜下腔出血成人患者 | 医学影像 | 动脉瘤性蛛网膜下腔出血 | 深度学习 | 自动分割模型 | 电子健康记录数据 | 819名患者 |
20087 | 2024-08-04 |
Enhanced mutual information neural estimators for optical fiber communication
2024-Aug-01, Optics letters
IF:3.1Q2
DOI:10.1364/OL.534025
PMID:39090938
|
研究论文 | 文章提出了一种新的互信息神经估计器用于光纤通信的互信息估计 | 首次提出增强型互信息神经估计器(E-MINE),通过扩大训练批量大小来提高估计准确性和稳定性 | 在处理非线性光纤信道的挑战时,仍然受限于未知的信道模型 | 准确估计光纤通信中的互信息以优化信道容量和性能 | 光纤通信中的互信息估计 | 机器学习 | NA | 深度学习 | 互信息神经估计器(MINE) | NA | NA |
20088 | 2024-08-07 |
Predicting vital sign deviations during surgery from patient monitoring data: developing and validating single-stream deep learning models
2024-Jul-31, British journal of anaesthesia
IF:9.1Q1
DOI:10.1016/j.bja.2024.06.030
PMID:39089955
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
20089 | 2024-08-04 |
Transfer learning across different chemical domains: virtual screening of organic materials with deep learning models pretrained on small molecule and chemical reaction data
2024-Jul-30, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-024-00886-1
PMID:39080777
|
研究论文 | 本研究展示了在不同化学领域中应用迁移学习进行有机材料虚拟筛选的潜力 | 该研究创新性地利用药物类似的小分子和化学反应数据库对BERT模型进行预训练,从而提升其在有机材料虚拟筛选中的表现 | 研究表明访问一个反应数据库,反应范围比USPTO更广可能进一步提高模型性能,并未详细探讨此点 | 探讨迁移学习在不同化学领域的应用以优化有机材料的虚拟筛选 | 研究对象为多种有机材料的虚拟筛选任务 | 机器学习 | NA | 深度学习 | BERT | 数据集 | 五个虚拟筛选任务的数据 |
20090 | 2024-08-04 |
Modelling the demographic history of human North African genomes points to a recent soft split divergence between populations
2024-Jul-30, Genome biology
IF:10.1Q1
DOI:10.1186/s13059-024-03341-4
PMID:39080715
|
研究论文 | 本研究对北非人类基因组的复杂人口历史进行了建模 | 采用了一种新的算法GP4PG,通过深度学习的近似贝叶斯计算(ABC-DL)框架有效构建了拟合北非人口的复杂人口模型 | 分析过程中仅使用了16个覆盖度超过30X的全基因组样本,可能限制了结果的普遍性 | 研究北非地区人口的历史和基因流动情况,并揭示阿拉伯和亚马兹igh人口的起源不同 | 北非地区的阿拉伯和亚马兹igh人群的基因组 | 数字病理学 | NA | 近似贝叶斯计算与深度学习(ABC-DL) | GP4PG | 基因组 | 364个基因组 |
20091 | 2024-08-04 |
Comparison of data fusion strategies for automated prostate lesion detection using mpMRI correlated with whole mount histology
2024-Jul-29, Radiation oncology (London, England)
DOI:10.1186/s13014-024-02471-0
PMID:39080735
|
研究论文 | 本文比较了输入级、特征级和决策级的数据融合技术,用于自动检测临床显著的前列腺病变。 | 提出了多种深度学习CNN架构,并比较了不同数据融合策略对前列腺病变检测的影响。 | 结合mpMRI数据和定量临床数据的效果没有显著差异。 | 研究自动检测前列腺病变的方法和数据融合策略。 | 临床显著的前列腺病变及其检测方法。 | 计算机视觉 | 前列腺癌 | 多参数MRI图像 | CNN | 医学影像 | 118个mpMRI图像和22个全切片组织学图像 |
20092 | 2024-08-04 |
Intercomparison of deep learning models in predicting streamflow patterns: insight from CMIP6
2024-Jul-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-63989-7
PMID:39080322
|
研究论文 | 本研究通过四种深度学习模型预测巴基斯坦斯瓦特河流域的每日流量 | 采用多模型集成计算的最佳组合以提高流量预测的准确性 | 研究仅限于特定地区的流量预测,可能不适用于其他地区 | 预测斯瓦特河流域的每日流量以支持水资源管理 | 斯瓦特河流域的每日流量数据 | 机器学习 | NA | 深度学习 | TLANN, FFANN, SANN, LSTM | 流量数据 | NA |
20093 | 2024-08-04 |
Prediction of protein secondary structure by the improved TCN-BiLSTM-MHA model with knowledge distillation
2024-07-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-67403-0
PMID:39020005
|
研究论文 | 本研究提出了一种改进的TCN-BiLSTM-MHA模型来预测蛋白质的二级结构 | 通过多尺度融合和双向操作改进的TCN模型更好地提取氨基酸序列特征,并结合知识蒸馏技术提升性能 | 模型的有效性可能受限于训练数据的多样性和规模 | 提高蛋白质二级结构预测的准确性,以助于蛋白质功能理解 | 使用改进的深度学习模型对蛋白质的二级结构进行预测 | 生物信息学 | NA | 深度学习 | 改进的TCN-BiLSTM-MHA模型 | 多种数据集 | 六个数据集的样本,包括TS115, CB513和PDB (2018-2020) |
20094 | 2024-08-04 |
Finite element models with automatic computed tomography bone segmentation for failure load computation
2024-07-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-66934-w
PMID:39019937
|
研究论文 | 本研究提出了一种基于深度学习的CT扫描骨骼分割方法,用于生物力学失效载荷模拟 | 提出了一个专门的预处理、基于深度学习的分割方法和后处理管道,能够有效处理有限的CT数据 | 需谨慎训练并验证模型,以确保自动分割的质量和可靠性 | 研究用于骨转移患者的CT数据中的骨骼分割,以进行失效载荷模拟 | 研究对象为人类股骨和椎骨的CT扫描图像 | 数字病理学 | 骨癌转移 | CT扫描 | U-Net | 图像 | 涉及多位患者的股骨和椎骨CT扫描 |
20095 | 2024-08-04 |
In Silico drug repurposing pipeline using deep learning and structure based approaches in epilepsy
2024-07-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-67594-6
PMID:39020064
|
研究论文 | 本研究开发了一种新颖的体外药物重新利用管道,用于癫痫治疗 | 结合变换器深度学习方法和分子结合亲和力计算来处理药物重新利用 | 对于特定靶点蛋白的候选抑制剂数量存在显著差异,影响管道普适性 | 开发高效的新药物重新利用策略以治疗癫痫 | 针对在癫痫发生机制中涉及的获得功能基因编码的24个靶点蛋白的候选药物 | 数字病理学 | 癫痫 | 变换器深度学习方法 | NA | NA | 对24个靶点蛋白的候选抑制剂进行了评估 |
20096 | 2024-08-04 |
Transformation from hematoxylin-and-eosin staining to Ki-67 immunohistochemistry digital staining images using deep learning: experimental validation on the labeling index
2024-Jul, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.4.047501
PMID:39087085
|
研究论文 | 本研究提出了一种数字染色方法,旨在利用深度学习将子宫内膜癌的H&E染色图像转化为Ki-67 IHC染色图像 | 使用深度学习和颜色去混合技术将H&E图像转化为高分辨率的IHC染色图像,这是一个新的数字染色方法 | 在跨案例验证中,数字染色与物理染色之间的相关性相对较低 | 旨在通过数字染色技术提高子宫内膜癌肿瘤的分子级可视化分析 | 研究对象为子宫内膜癌的整个切片图像 | 数字病理学 | 子宫内膜癌 | 深度学习 | U-Net | 图像 | NA |
20097 | 2024-08-04 |
The changing landscape of text mining: a review of approaches for ecology and evolution
2024-Jul, Proceedings. Biological sciences
DOI:10.1098/rspb.2024.0423
PMID:39082244
|
综述 | 本文回顾了生态学和进化生物学中文本挖掘的方法。 | 提供了基于频率的方法、传统自然语言处理和基于深度学习的语言模型的三种广泛范式的映射,为生态和进化研究整合这些工具提供了基础和前沿概念。 | 可能未涵盖所有文本挖掘方法的最新进展。 | 探讨生态学和进化研究中文本挖掘的变革性方法。 | 涉及生态学和进化生物学中的数据合成和建模。 | 自然语言处理 | NA | 机器学习语言模型 | 深度学习语言模型 | 文本 | NA |
20098 | 2024-08-04 |
Learning three-dimensional aortic root assessment based on sparse annotations
2024-Jul, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.4.044504
PMID:39087084
|
研究论文 | 该文章提出了一种基于稀疏标注的三维主动脉根部评估方法 | 通过二维横截面标注和点云表面重建,减少了对大量注释数据的需求,简化了注释过程 | 在特定区域的注释可能仍需专家验证,以确保准确性 | 旨在为经导管主动脉瓣置换术(TAVI)提供准确的主动脉根部和左心室流出道(LVOT)的分析 | 主动脉根部和左心室流出道的几何形状和结构 | 数字病理学 | NA | 深度学习 | 3D分割网络 | NA | NA |
20099 | 2024-08-04 |
Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model
2024-Jul-01, Investigative ophthalmology & visual science
IF:5.0Q1
DOI:10.1167/iovs.65.8.50
PMID:39083310
|
研究论文 | 本研究探讨了视网膜生物标志物与缺血性中风亚型之间的关联及自动分类模型 | 提出了一种使用人工智能增强的光学相干层析血管造影图像分析的方法来检测缺血性中风及其亚型 | 仅基于两组人群进行研究,可能影响结果的普遍适用性 | 研究缺血性中风及其亚型的自动识别方法 | 865名参与者的1730只眼睛 | 数字病理学 | 缺血性中风 | 光学相干层析血管造影(OCTA) | 深度学习模型 | 图像 | 865名参与者,1730只眼睛 |
20100 | 2024-08-04 |
Identification of Microorganism in Infected Wounds by Positively Charged Selective Sensor Array and Deep Learning Algorithm
2024-05-14, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c01845
PMID:38702857
|
研究论文 | 本研究使用带正电的选择传感器阵列和深度学习算法识别感染伤口中的微生物 | 创新点在于结合了特定的阳离子染料与深度学习模型ResNet实现了高效的微生物分类 | 可能缺乏不同环境条件下的微生物识别验证 | 研究目标是快速准确识别病原微生物,以便于感染诊断 | 研究对象为14种用S-TDs染色的微生物,包括革兰阴性菌、革兰阳性菌和真菌 | 数字病理学 | 感染性疾病 | 荧光传感器阵列 | 残差网络(ResNet) | 图像 | 涉及14种微生物的大量图像数据 |