本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20101 | 2024-08-22 |
Radiomics based on T2-weighted and diffusion-weighted MR imaging for preoperative prediction of tumor deposits in rectal cancer
2024-Jun, American journal of surgery
IF:2.7Q1
DOI:10.1016/j.amjsurg.2024.01.002
PMID:38272767
|
研究论文 | 本研究旨在开发和验证基于T2加权(T2WI)和扩散加权磁共振成像(DWI)的放射组学诺模图,用于直肠癌患者术前肿瘤沉积(TDs)的识别 | 本研究构建的放射组学诺模图结合了Rad-score(T2WI + ADC)和临床因素,显示出优于随机森林、支持向量机和深度学习模型的性能 | NA | 开发和验证一种基于T2WI和DWI的放射组学诺模图,用于直肠癌患者术前肿瘤沉积的预测 | 直肠癌患者的肿瘤沉积 | 数字病理学 | 直肠癌 | 磁共振成像(MRI) | 诺模图 | 图像 | 共199名直肠癌患者,分为训练集(159名)和验证集(40名) |
20102 | 2024-08-22 |
Evaluation method for ecology-agriculture-urban spaces based on deep learning
2024-05-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-61919-1
PMID:38762514
|
research paper | 本研究基于自注意力残差神经网络(SARes-NET)模型,评估了中国榆林市的生态-农业-城市空间 | 本研究采用了自注意力残差神经网络(SARes-NET)模型,该模型在模拟性能上优于其他五种模型,能够捕捉复杂的非线性关系并减少数据处理中的人为错误 | NA | 协调城市发展、粮食安全和生态保护,促进可持续发展 | 中国榆林市的生态-农业-城市空间 | computer vision | NA | deep learning | Self-Attention Residual Neural Network (SARes-NET) | spatial data | NA |
20103 | 2024-08-22 |
Real-time visualization of dextran extravasation in intermittent hypoxia mice using noninvasive SWIR imaging
2024-04-01, American journal of physiology. Heart and circulatory physiology
DOI:10.1152/ajpheart.00787.2023
PMID:38363213
|
研究论文 | 本研究利用短波红外(SWIR)成像技术,结合血管分割和深度学习分析,实时监测间歇性低氧小鼠模型中的葡聚糖渗出情况 | 首次报道了间歇性低氧暴露14天后,小鼠模型中70 kDa葡聚糖的实时渗出增加 | NA | 研究间歇性低氧条件下血管通透性的变化 | C57Bl/6小鼠在间歇性低氧和常氧条件下的血管通透性 | 数字病理学 | 睡眠呼吸障碍 | 短波红外(SWIR)成像 | 深度学习 | 图像 | C57Bl/6小鼠在间歇性低氧和常氧条件下暴露14天 |
20104 | 2024-08-22 |
Continual learning framework for a multicenter study with an application to electrocardiogram
2024-Mar-06, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-024-02464-9
PMID:38448921
|
研究论文 | 本文提出了一种无需中央服务器的持续学习框架,用于多中心研究,并应用于心电图分析 | 该框架能够防止先前训练知识的灾难性遗忘,并通过生成对抗网络生成的假数据进行前瞻性评估 | NA | 旨在解决多中心数据联合研究中数据共享的隐私问题和中央服务器的成本及法律限制 | 心电图数据集和心律失常检测模型 | 机器学习 | 心血管疾病 | 生成对抗网络 | NA | 心电图数据 | 四个独立的心电图数据集 |
20105 | 2024-08-22 |
Deep learning models reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization
2024-Feb-27, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2310012121
PMID:38377194
|
研究论文 | 本文使用时空深度神经网络(stDNN)模型揭示了人类功能性脑组织的性别差异及其行为相关性 | 本文通过stDNN模型和可解释AI(XAI)分析,揭示了高度可复制和可泛化的性别差异,并预测了性别特定的认知特征 | NA | 探讨人类功能性脑组织的性别差异及其行为后果 | 男性与女性大脑的功能性脑动态 | 机器学习 | NA | 时空深度神经网络(stDNN) | 深度神经网络 | 功能性脑数据 | 约1,500名20至35岁的年轻成年人 |
20106 | 2024-08-22 |
filoVision - using deep learning and tip markers to automate filopodia analysis
2024-02-15, Journal of cell science
IF:3.3Q3
DOI:10.1242/jcs.261274
PMID:38264939
|
研究论文 | 本文介绍了一种名为filoVision的深度学习平台,用于自动化分析带有标记的丝状伪足 | filoVision平台通过filoTips和filoSkeleton工具,能够在没有肌动蛋白或膜标记的情况下,仅使用单一的丝状伪足尖端标记进行信息提取,并结合肌动蛋白标记进行更全面的分析 | NA | 开发一种适用于不同细胞类型和可视化方法的自动化丝状伪足分析流程 | 丝状伪足的自动化分析 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
20107 | 2024-08-22 |
Expert-centered Evaluation of Deep Learning Algorithms for Brain Tumor Segmentation
2024-Jan, Radiology. Artificial intelligence
DOI:10.1148/ryai.220231
PMID:38197800
|
研究论文 | 本文通过文献调查和专家评估,研究了深度学习算法在脑肿瘤分割中的应用和评价 | 本文首次探讨了临床专家对脑肿瘤分割质量感知的评估,并揭示了现有量化质量指标与临床感知之间的差异 | 研究中专家对分割质量的感知存在较大差异,且现有指标未能完全反映临床感知 | 评估深度学习算法在脑肿瘤分割中的表现,并研究临床专家对分割质量的感知 | 脑肿瘤分割算法及其质量评估 | 机器学习 | 脑肿瘤 | 深度学习算法 | NA | 图像 | 60例脑肿瘤分割案例 |
20108 | 2024-08-22 |
M-VAAL: Multimodal Variational Adversarial Active Learning for Downstream Medical Image Analysis Tasks
2024, Medical Image Understanding and Analysis. Medical Image Understanding and Analysis (Conference)
DOI:10.1007/978-3-031-48593-0_4
PMID:39156493
|
研究论文 | 本文提出了一种多模态变分对抗主动学习方法(M-VAAL),用于提高医学图像分析任务中的数据效率 | M-VAAL方法利用多模态辅助信息增强主动采样,提高模型的鲁棒性 | NA | 旨在减少医学领域中大规模标注样本的需求,通过主动学习选择最有信息量的样本进行标注 | 脑肿瘤分割与多标签分类,以及胸部X光图像分类 | 计算机视觉 | NA | 变分对抗主动学习 | 变分对抗网络 | 图像 | 使用了BraTS2018数据集和COVID-QU-Ex数据集 |
20109 | 2024-08-22 |
A retrospective evaluation of individual thigh muscle volume disparities based on hip fracture types in followed-up patients: an AI-based segmentation approach using UNETR
2024, PeerJ
IF:2.3Q2
DOI:10.7717/peerj.17509
PMID:39161969
|
研究论文 | 本研究使用基于UNETR的AI自动分割模型,评估了随访的髋部骨折患者中不同类型骨折导致的单个大腿肌肉体积差异 | 采用基于深度学习算法的自动肌肉分割模型,实现了对大腿肌肉体积差异的高效准确分析 | 研究样本量较小,仅包括18名患者 | 评估髋部骨折患者随访期间大腿肌肉体积的变化,并指导康复干预 | 髋部骨折患者的单个大腿肌肉体积 | 计算机视觉 | 骨折 | CT扫描 | UNETR | 图像 | 18名髋部骨折手术治疗后的患者 |
20110 | 2024-08-22 |
Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma
2023-Dec, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100326
PMID:37678674
|
研究论文 | 本文利用先进的深度学习和人工智能技术,从常规的苏木精和伊红染色病理图像中分割和识别细胞,并提取了9种与生物学相关的病理特征,以解码肺部癌前病变的演变过程 | 首次利用病理特征分析肺部癌前病变到浸润性腺癌的免疫和分子演化过程,展示了病理学在研究肺癌发生中的可行性和巨大潜力 | 研究受限于肺癌前体材料的不足 | 深入理解早期肺癌癌变过程 | 肺部癌前病变到浸润性腺癌的演变过程 | 数字病理学 | 肺癌 | 深度学习和人工智能技术 | NA | 图像 | 分析了来自日本、中国和美国的3个不同队列,共98名患者,162张切片,669个感兴趣区域,包括143个正常样本、129个不典型腺瘤样增生、94个原位腺癌、98个微小浸润性腺癌和205个浸润性腺癌 |
20111 | 2024-08-22 |
Biometric Contrastive Learning for Data-Efficient Deep Learning from Electrocardiographic Images
2023-Sep-14, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.09.13.23295494
PMID:37745527
|
研究论文 | 本文介绍了一种名为生物特征对比学习(BCL)的自监督预训练方法,用于从心电图(ECG)图像中进行数据高效的深度学习,以检测心脏疾病。 | BCL方法通过利用来自同一患者的不同ECG图像的生物特征签名,提高了AI模型在有限标记数据下检测心脏疾病的效率。 | NA | 开发一种数据高效的深度学习方法,用于从心电图图像中检测心脏疾病。 | 心电图图像,用于检测心房颤动(AF)、性别和LVEF<40%。 | 机器学习 | 心血管疾病 | 生物特征对比学习(BCL) | 卷积神经网络(CNN) | 图像 | 78,288个个体的心电图图像 |
20112 | 2024-08-22 |
FDU-Net: Deep Learning-Based Three-Dimensional Diffuse Optical Image Reconstruction
2023-08, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2023.3252576
PMID:37028063
|
研究论文 | 本文介绍了一种基于深度学习的三维扩散光学图像重建模型FDU-Net,用于提高近红外扩散光学断层成像(DOT)的图像质量和重建速度 | FDU-Net通过结合全连接子网、卷积编码器-解码器子网和U-Net,实现了快速、端到端的三维DOT图像重建,显著提高了图像质量和重建速度 | FDU-Net目前仅在模拟数据和真实患者测量数据上进行了测试,尚未在临床环境中广泛应用 | 开发一种新的深度学习模型,以提高扩散光学断层成像的图像质量和重建速度,促进其在乳腺癌临床诊断中的应用 | 三维扩散光学图像重建 | 机器学习 | 乳腺癌 | 深度学习 | FDU-Net | 图像 | 400个模拟案例和真实患者测量数据 |
20113 | 2024-08-22 |
A general optimization protocol for molecular property prediction using a deep learning network
2022-01-17, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbab367
PMID:34498673
|
研究论文 | 本文探讨了使用深度学习网络预测分子性质时,如何通过结合多种优化方法来提高模型性能 | 本文采用了三种高性能优化方法:动态批次大小策略、贝叶斯优化选择超参数以及通过前馈神经网络学习化学特征,并将这些方法结合起来形成一个通用的优化流程 | NA | 开发一个通用的优化协议,用于通过深度学习网络预测分子性质 | 分子性质预测模型 | 机器学习 | NA | 深度学习网络 | CNN | 分子性质数据 | 七种不同的分子性质 |
20114 | 2024-08-22 |
Evaluation of Automated Measurement of Hair Density Using Deep Neural Networks
2022-Jan-14, Sensors (Basel, Switzerland)
DOI:10.3390/s22020650
PMID:35062611
|
研究论文 | 本研究利用深度学习技术评估自动测量头发密度的准确性,并探讨其自动化可行性 | 采用YOLOv4等对象检测算法进行性能比较,显示出最佳的平均精度 | NA | 评估深度学习技术在自动测量头发密度中的应用 | 头发密度测量 | 计算机视觉 | NA | 深度学习 | YOLOv4 | 图像 | 4492张来自男性脱发患者的放大头皮RGB图像 |
20115 | 2024-08-22 |
Integrating Domain Knowledge into Deep Learning for Skin Lesion Risk Prioritization to Assist Teledermatology Referral
2021-Dec-24, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics12010036
PMID:35054203
|
研究论文 | 本文通过结合领域知识与深度学习,开发了一种用于皮肤病变风险优先级排序的方法,以辅助远程皮肤科转诊 | 提出了一种新的优先级排序流程,该流程受领域知识启发,并探索了自动病变分割、层次分类和课程学习等不同学习方案 | 在大多数实验中,添加患者信息并未带来益处 | 改进现有的远程皮肤科流程,提高皮肤病变诊断的效率 | 皮肤病变的风险优先级排序 | 机器学习 | NA | 深度学习 | CNN | 图像 | 回顾性数据集来自葡萄牙国家卫生系统的转诊请求 |
20116 | 2024-08-22 |
Robustness of convolutional neural networks to physiological electrocardiogram noise
2021-Dec-13, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
DOI:10.1098/rsta.2020.0262
PMID:34689617
|
研究论文 | 本研究探讨了卷积神经网络对生理性心电图噪声的鲁棒性 | 首次系统评估了卷积神经网络在处理含噪声心电图数据时的性能 | 研究仅限于特定类型的心电图噪声和数据集,可能不适用于所有情况 | 评估深度学习方法在心电图信号处理中的鲁棒性 | 心电图信号及其在心血管疾病诊断中的应用 | 机器学习 | 心血管疾病 | NA | CNN | 图像 | 具体样本数量未在摘要中提及 |
20117 | 2024-08-22 |
Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning
2021-Oct-19, Plant methods
IF:4.7Q1
DOI:10.1186/s13007-021-00806-6
PMID:34666801
|
研究论文 | 本文比较了偏最小二乘回归(PLSR)与多种深度学习方法及集成模型在预测小麦叶片光合作用及相关性状方面的准确性 | 提出的深度学习及集成模型能灵活应用于不同光谱范围,且不显著影响准确性,无需昂贵的高成本叶片光谱仪 | NA | 提高小麦叶片光合作用及相关性状的预测准确性 | 小麦叶片的光合作用及相关性状 | 机器学习 | NA | 深度学习 | 集成模型 | 光谱数据 | 使用先前发表的数据集进行训练和测试 |
20118 | 2024-08-22 |
Image quality improvement of single-shot turbo spin-echo magnetic resonance imaging of female pelvis using a convolutional neural network
2020-Nov-20, Medicine
IF:1.3Q2
DOI:10.1097/MD.0000000000023138
PMID:33217817
|
研究论文 | 开发了一种基于深度学习的方法,用于提高单次激发涡轮自旋回波(SSTSE)磁共振成像的女性盆腔图像质量 | 使用卷积神经网络(CNN)生成的DL-SSTSE图像在图像质量上显著优于传统的SSTSE图像,并且在运动伪影鲁棒性和采集时间效率方面保持了SSTSE成像的优势 | NA | 比较基于深度学习的单次激发涡轮自旋回波(DL-SSTSE)图像与涡轮自旋回波(TSE)和传统SSTSE图像在图像质量上的差异 | 女性盆腔的SSTSE磁共振成像图像 | 计算机视觉 | NA | 磁共振成像(MRI) | 卷积神经网络(CNN) | 图像 | 105个训练样本和21个测试样本 |
20119 | 2024-08-22 |
Deep learning COVID-19 detection bias: accuracy through artificial intelligence
2020-08, International orthopaedics
IF:2.0Q2
DOI:10.1007/s00264-020-04609-7
PMID:32462314
|
研究论文 | 本文开发了一种深度学习模型,通过胸部X光扫描提高COVID-19病例报告的准确性并精确预测疾病 | 采用卷积神经网络(CNN)和迁移学习方法,自动识别患者胸部X光片中的结构异常,提高检测准确性 | NA | 提高COVID-19病例检测的准确性 | COVID-19病例的胸部X光扫描 | 机器学习 | COVID-19 | 卷积神经网络(CNN) | CNN | 图像 | 使用来自不同国家的患者公共数据集,包括74个真阴性和32个真阳性病例 |
20120 | 2024-08-22 |
Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model
2020, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2020.03.025
PMID:32280433
|
研究论文 | 本研究利用预训练的基于深度学习的药物-靶点相互作用模型MT-DTI,识别可能作用于SARS-CoV-2病毒蛋白的商业可用抗病毒药物 | 使用MT-DTI模型预测商业可用药物对SARS-CoV-2的潜在作用,为缺乏有效治疗选项的SARS-CoV-2提供新的治疗策略 | NA | 识别可能对SARS-CoV-2有效的商业可用抗病毒药物 | SARS-CoV-2病毒蛋白及其潜在的抗病毒药物 | 机器学习 | NA | 深度学习 | Molecule Transformer-Drug Target Interaction (MT-DTI) | 药物-靶点相互作用数据 | 多种抗病毒药物及其对SARS-CoV-2蛋白酶的抑制活性 |