本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20121 | 2024-08-22 |
Delfos: deep learning model for prediction of solvation free energies in generic organic solvents
2019-Sep-28, Chemical science
IF:7.6Q1
DOI:10.1039/c9sc02452b
PMID:32110289
|
研究论文 | 本文介绍了一种名为Delfos的深度学习模型,用于预测通用有机溶剂中的溶剂化自由能 | Delfos模型采用了两个独立的溶剂和溶质编码器网络,结合词嵌入和循环层以及注意力机制,从循环神经网络的输出中提取重要子结构 | NA | 开发一种新的机器学习方法,用于预测有机溶剂中的溶剂化自由能 | 有机溶质和溶剂系统的溶剂化自由能 | 机器学习 | NA | 深度学习 | CNN | 文本 | 2495个溶质-溶剂对 |
20122 | 2024-08-21 |
Analyzing pain patterns in the emergency department: Leveraging clinical text deep learning models for real-world insights
2024-Oct, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105544
PMID:39003790
|
研究论文 | 本研究利用临床文本深度学习模型分析澳大利亚某大城市的急诊部门中患者的疼痛发生率 | 采用细调的领域特定转换器基础临床文本深度学习模型,自动识别常规收集的医疗记录中的疼痛情况 | NA | 确定使用临床文本深度学习算法在大型澳大利亚内城急诊部门中疼痛患者的发生率 | 分析急诊部门中患者的疼痛模式及其随时间的变化,特别是在新冠疫情开始后的变化 | 自然语言处理 | NA | 临床文本深度学习 | 转换器基础模型 | 文本 | 235,789名成年患者 |
20123 | 2024-08-21 |
Integrative deep learning with prior assisted feature selection
2024-Sep-10, Statistics in medicine
IF:1.8Q1
DOI:10.1002/sim.10148
PMID:38923006
|
研究论文 | 本研究将深度学习融入整合分析框架,并引入特征选择层和集成学习方法利用先前研究信息,提出了一种先验辅助的整合深度学习方法(PANDA) | 提出了一种先验辅助的整合深度学习方法(PANDA),通过集成学习方法利用先前研究信息,提高了特征选择和结果预测的性能 | NA | 将深度学习融入整合分析框架,解决生物医学研究中的“小样本和大样本”挑战 | 基因与疾病之间的复杂关系 | 机器学习 | 皮肤恶性黑色素瘤 | 深度学习 | CNN | 基因数据 | 使用了一个皮肤恶性黑色素瘤(SKCM)数据集进行实际应用分析 |
20124 | 2024-08-21 |
Utilizing deep learning algorithms for automated oil spill detection in medium resolution optical imagery
2024-Sep, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2024.116777
PMID:39083910
|
研究论文 | 本研究评估了三种典型的基于卷积神经网络的深度学习算法在利用中分辨率光学卫星图像进行溢油检测中的性能 | 研究通过集成注意力机制,包括挤压与激励模块(SE)、卷积块注意力模块(CBAM)和简单无参数注意力模块(SimAM),改进了UNet、BiSeNetV2和DeepLabV3+架构 | NA | 评估深度学习算法在中分辨率光学卫星图像中自动检测溢油的性能 | 溢油检测 | 计算机视觉 | NA | 深度学习算法 | CNN | 图像 | 基于全球报告的慢性和意外溢油案例创建的训练和验证数据集 |
20125 | 2024-08-21 |
Automatic segmentation of knee CT images of tibial plateau fractures based on three-dimensional U-Net: Assisting junior physicians with Schatzker classification
2024-Sep, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111605
PMID:39059081
|
研究论文 | 本研究旨在使用基于三维U-Net的方法自动分割膝关节CT图像中的胫骨平台骨折,并构建精确的胫骨平台骨折三维图谱,以辅助Schatzker分类在临床实践中的应用 | 提出了一种基于三维U-Net的方法,能够快速且准确地分割膝关节CT图像中的胫骨平台骨折,并辅助Schatzker分类 | 研究是回顾性的,样本来自单一医院,可能存在样本偏倚 | 开发一种自动分割膝关节CT图像中胫骨平台骨折的方法,以辅助Schatzker分类 | 膝关节CT图像中的胫骨平台骨折 | 计算机视觉 | 骨折 | 三维U-Net | U-Net | 图像 | 234例胫骨平台骨折病例 |
20126 | 2024-08-21 |
Development of a ship-based camera monitoring system for floating marine debris
2024-Sep, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2024.116722
PMID:39033599
|
研究论文 | 本研究开发了一种用于监测海洋漂浮垃圾的自动化监控系统 | 利用YOLOv8架构的深度学习模型和BoT-SORT算法进行海洋漂浮垃圾的跟踪和检测 | 系统主要针对大于20厘米的海洋漂浮垃圾 | 旨在减少传统视觉调查的劳动密集性 | 海洋漂浮垃圾 | 计算机视觉 | NA | YOLOv8, BoT-SORT | 深度学习模型 | 视频, 图像 | 55.6小时视频和大量标注图像 |
20127 | 2024-08-21 |
Differential diagnostic value of radiomics models in benign versus malignant vertebral compression fractures: A systematic review and meta-analysis
2024-Sep, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111621
PMID:39018646
|
meta-analysis | 本研究通过系统综述和荟萃分析,评估了放射组学模型在区分良性和恶性椎体压缩性骨折中的诊断效能 | 放射组学模型在区分良性和恶性椎体压缩性骨折中的诊断效能显著,优于传统放射科医生的诊断 | 已发表的放射组学模型存在较大异质性,需要更多大规模临床试验来验证其普遍适用性 | 量化放射组学模型在区分良性和恶性椎体压缩性骨折中的诊断效能 | 良性和恶性椎体压缩性骨折的诊断 | digital pathology | NA | 放射组学 | NA | 影像数据 | 共涉及1,519个经病理诊断的肿瘤浸润椎体 |
20128 | 2024-08-21 |
Enhancing water quality monitoring through the integration of deep learning neural networks and fuzzy method
2024-Sep, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2024.116698
PMID:39002215
|
研究论文 | 本研究通过整合深度学习神经网络和模糊方法,对伊朗西南部地区的水样进行空间分析,并生成水质地图,同时预测未来水质污染趋势 | 本研究采用了LSTM模型进行水质预测,并展示了其优越的预测性能 | NA | 提高水质监测的效率和准确性 | 伊朗西南部地区的水质 | 机器学习 | NA | 深度学习神经网络 | LSTM | 水质数据 | 伊朗西南部地区的水样 |
20129 | 2024-08-21 |
BraNet: a mobil application for breast image classification based on deep learning algorithms
2024-Sep, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03084-1
PMID:38693328
|
研究论文 | 本研究开发了一款名为BraNet的开源移动应用,用于基于深度学习算法的二维乳腺影像分割和分类 | BraNet应用在良性与恶性超声图像分类中表现出比数字乳腺摄影更高的准确性 | 深度学习算法在训练时需要考虑数据量和异常类型的多样性,特别是在乳腺摄影数据中 | 开发一款用于乳腺影像分类的移动应用,提高诊断准确性并减少误诊 | 乳腺影像的分割和分类 | 计算机视觉 | 乳腺癌 | 深度学习算法 | SNGAN, SAM, ResNet18 | 图像 | 290张原始感兴趣区域(RoI)图像 |
20130 | 2024-08-21 |
SpanSeq: similarity-based sequence data splitting method for improved development and assessment of deep learning projects
2024-Sep, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqae106
PMID:39157582
|
研究论文 | 本文介绍了一种名为SpanSeq的基于相似性的序列数据分割方法,用于改进深度学习项目的开发和评估 | SpanSeq方法能够避免数据集之间的数据泄露,适用于大多数生物序列(基因、蛋白质和基因组) | NA | 探索深度学习模型在计算生物学中的应用,并改进数据分割方法以提高模型评估的准确性 | 深度学习模型在生物信息学中的应用 | 机器学习 | NA | 深度学习 | 深度学习模型 | 序列数据 | NA |
20131 | 2024-08-21 |
BIDSAlign: a library for automatic merging and preprocessing of multiple EEG repositories
2024-Aug-20, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ad6a8c
PMID:39094617
|
研究论文 | 本研究通过引入一个标准化库BIDSAlign,旨在解决电生理数据分析中与数据驱动相关的挑战,该库能高效处理和合并来自不同来源的异构EEG数据集到一个通用标准模板中 | BIDSAlign库能够处理BIDS和非BIDS数据集,通过定义一个通用管道和指定的通道模板来统一不同设置下获取的EEG记录,并提供了一系列可视化功能和一个用户友好的图形用户界面 | NA | 创建一个环境,允许预处理公共数据集,以便为深度学习架构的有效训练提供数据 | EEG数据集 | 神经科学 | NA | 电生理数据分析 | 深度学习 | EEG数据 | 多个公共数据集 |
20132 | 2024-08-21 |
Predicting Emission Spectra of Heteroleptic Iridium Complexes Using Artificial Chemical Intelligence
2024-Aug-19, Chemphyschem : a European journal of chemical physics and physical chemistry
IF:2.3Q2
DOI:10.1002/cphc.202400176
PMID:38752882
|
研究论文 | 本文报道了一种基于深度学习的方法,用于精确预测磷光异配位[Ir( )( )]配合物的发射光谱 | 该方法利用图神经网络和其他化学特征,能够超越传统DFT和相关波函数方法的准确性,并对不完美的训练光谱具有鲁棒性 | NA | 旨在快速发现新型Ir(III)染料,用于有机发光二极管和太阳能燃料电池等应用 | 磷光异配位[Ir( )( )]配合物的发射光谱 | 机器学习 | NA | 深度学习 | 图神经网络 | 实验数据 | NA |
20133 | 2024-08-21 |
Enhancing dental interns' proficiency in operating electronic facebows through scenario-training-based deep learning method
2024-Aug-19, Journal of dental education
IF:1.4Q3
DOI:10.1002/jdd.13696
PMID:39160763
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
20134 | 2024-08-21 |
An efficient colorectal cancer detection network using atrous convolution with coordinate attention transformer and histopathological images
2024-08-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70117-y
PMID:39154091
|
研究论文 | 本研究提出了一种结合坐标注意力变换器和空洞卷积的新型结直肠癌检测网络(CCDNet),用于提高组织病理学图像中癌症分类和肿瘤定位的准确性 | 引入了一种新的空洞卷积与坐标注意力变换器(AConvCAT),结合了两种网络的优势,通过捕捉局部和全局信息来分类不同尺度的结直肠组织 | NA | 提高结直肠癌在组织病理学图像中的检测准确性 | 结直肠癌的组织病理学图像 | 计算机视觉 | 结直肠癌 | 空洞卷积 | CNN | 图像 | 使用了结直肠组织病理学图像和NCT-CRC-HE-100K数据集 |
20135 | 2024-08-21 |
Application of artificial intelligence in the diagnosis and treatment of Kawasaki disease
2024-Aug-16, World journal of clinical cases
IF:1.0Q3
DOI:10.12998/wjcc.v12.i23.5304
PMID:39156094
|
评论 | 本文评论了人工智能在川崎病诊断和治疗中的应用潜力和局限性 | 探讨了机器学习、基因信号计算工具箱和深度学习在川崎病诊断中的创新应用 | 强调了提高AI决策准确性、保护患者个人信息和明确AI决策责任的重要性 | 探讨人工智能在川崎病诊断和治疗中的应用 | 川崎病的诊断和治疗 | 机器学习 | 川崎病 | 机器学习 (ML), 深度学习 (DL) | NA | 医学数据 | NA |
20136 | 2024-08-21 |
Prediction of non-muscle invasive bladder cancer recurrence using deep learning of pathology image
2024-08-15, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-66870-9
PMID:39147803
|
研究论文 | 本研究旨在构建基于深度学习的病理图像分析模型,用于预测非肌肉浸润性膀胱癌(NMIBC)的早期复发 | 本研究通过两阶段的补丁级预测和全切片级预测,构建了一个病理图像分析模型,并进行了迁移学习,以提高模型的泛化能力 | NA | 开发一种基于深度学习的病理图像分析模型,用于预测非肌肉浸润性膀胱癌的早期复发 | 非肌肉浸润性膀胱癌(NMIBC)患者的病理图像 | 数字病理学 | 膀胱癌 | 深度学习 | CNN | 图像 | 训练集包含147名患者,测试集包含63名患者 |
20137 | 2024-08-21 |
Empowering vertical farming through IoT and AI-Driven technologies: A comprehensive review
2024-Aug-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e34998
PMID:39157372
|
综述 | 本文全面分析了机器学习和物联网技术在垂直农业系统中的应用 | 通过集成人工智能和物联网技术,解决了垂直农业中多指标监测、营养建议和植物诊断系统的难题 | 文章未明确提及具体的局限性 | 探讨如何利用现代技术提高垂直农业的效率和产量 | 垂直农业系统中的疾病检测、作物产量预测、营养和灌溉控制管理 | 计算机视觉 | NA | 机器学习(ML)、深度学习(DL)、物联网(IoT)、图像处理 | NA | 图像 | NA |
20138 | 2024-08-21 |
Hybridizing mechanistic modeling and deep learning for personalized survival prediction after immune checkpoint inhibitor immunotherapy
2024-Aug-14, NPJ systems biology and applications
IF:3.5Q1
DOI:10.1038/s41540-024-00415-8
PMID:39143136
|
研究论文 | 本研究结合预测性机制建模和深度学习方法,预测个体患者在接受免疫检查点抑制剂(ICI)免疫治疗后的生存概率 | 提出了一种混合方法,结合了可从机制模型计算的测量值和易于测量的患者特征,提高了预测准确性 | NA | 旨在提高个体患者在接受ICI免疫治疗后的生存预测准确性 | 个体患者的生存概率 | 机器学习 | NA | 深度学习 | 深度学习时间-事件预测模型 | 混合机制+临床数据 | 93名患者 |
20139 | 2024-08-21 |
Deep learning-assisted multispectral imaging for early screening of skin diseases
2024-Aug, Photodiagnosis and photodynamic therapy
IF:3.1Q2
DOI:10.1016/j.pdpdt.2024.104292
PMID:39069204
|
研究论文 | 本研究介绍了一种基于多光谱成像(MSI)的方法,用于早期筛查和检测皮肤表面病变 | 该方法通过捕获多波长图像数据,能够检测组织中的细微光谱变化,显著增强对各种皮肤状况的区分 | NA | 旨在引入一种基于多光谱成像的方法,用于早期筛查和检测皮肤表面病变 | 皮肤表面病变,包括黑色素细胞痣、疣、脂溢性角化病和牛皮癣 | 计算机视觉 | 皮肤疾病 | 多光谱成像 | 一维卷积神经网络 | 图像 | NA |
20140 | 2024-08-21 |
Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models
2024-Aug, Photodiagnosis and photodynamic therapy
IF:3.1Q2
DOI:10.1016/j.pdpdt.2024.104259
PMID:38944405
|
研究论文 | 本文利用基于卷积神经网络(CNN)的模型和集成学习方法,通过光学成像技术诊断和检测糖尿病视网膜病变(DR) | 提出了一种结合多种深度学习模型(如VGG19、Resnet50和InceptionV3)的集成方法,以提高糖尿病视网膜病变的检测性能和鲁棒性 | NA | 开发一种新的方法来早期诊断糖尿病视网膜病变 | 糖尿病视网膜病变 | 计算机视觉 | 糖尿病 | 卷积神经网络(CNN) | 集成模型 | 图像 | 使用公开的视网膜图像数据集进行评估 |