深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 33293 篇文献,本页显示第 20461 - 20480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
20461 2024-12-15
Deep learning for tooth identification and numbering on dental radiography: a systematic review and meta-analysis
2024-Jan-11, Dento maxillo facial radiology
综述 本文系统回顾和荟萃分析了深度学习在牙科放射图像中牙齿识别和编号的应用 深度学习模型在牙齿识别和编号方面表现出高精度和高准确性,能够增强复杂的自动化流程 研究仅包括了29篇符合条件的文献,可能存在选择偏倚 评估深度学习在牙科放射图像中牙齿识别和编号的应用效果 人类牙科放射图像中的牙齿识别和编号 计算机视觉 NA 深度学习 CNN 图像 29项研究 NA NA NA NA
20462 2024-12-15
Comparison of deep learning methods for the radiographic detection of patients with different periodontitis stages
2024-Jan-11, Dento maxillo facial radiology
研究论文 本研究评估了使用深度学习方法在全景X光片上进行计算机辅助牙周分类骨丢失分期的准确性,并比较了不同模型和层的表现 本研究开发了一种新的基于DenseNet121 + GAP + mRMR的支持向量机模型,该模型在牙周骨丢失分类中表现优于其他模型,能够从原始图像中检测有效特征,无需手动选择 NA 评估深度学习方法在全景X光片上进行牙周分类骨丢失分期的准确性 全景X光片上的牙周骨丢失分期 计算机视觉 牙周病 深度学习 CNN 图像 2533张全景X光片,包括721张健康组,842张Stage1/2组,970张Stage3/4组 NA NA NA NA
20463 2024-12-15
Automatic detection of posterior superior alveolar artery in dental cone-beam CT images using a deeply supervised multi-scale 3D network
2024-Jan-11, Dento maxillo facial radiology
研究论文 本研究开发了一种用于在牙科锥形束CT图像中自动检测后上牙槽动脉的深度监督多尺度3D网络 提出了多尺度深度监督的3D U-Net网络(3D U-Net MSDS),显著提高了后上牙槽动脉中心像素的定位精度 研究仅在150名受试者的数据上进行验证,样本量相对较小,可能影响模型的泛化能力 开发一种鲁棒且准确的深度学习网络,用于在牙科锥形束CT图像中检测后上牙槽动脉 后上牙槽动脉在牙科锥形束CT图像中的中心像素定位 计算机视觉 NA 深度学习 3D U-Net MSDS 图像 150名受试者的牙科锥形束CT数据 NA NA NA NA
20464 2024-12-15
Coupled intelligent prediction model for medium- to long-term runoff based on teleconnection factors selection and spatial-temporal analysis
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于遥相关因子选择和时空分析的耦合智能预测模型,用于中长期径流预测 本文创新性地结合了随机森林(RF)、支持向量回归(SVR)和多层感知器回归(MLPR),开发了两种耦合智能预测模型(RF-SVR和RF-MLPR),以提高预测精度和泛化能力 预测精度随着预测周期的延长而下降,表明长期预测由于不确定性增加和影响因素的累积而更具挑战性 提高中长期径流预测的准确性,为洪水控制、干旱缓解、水资源综合管理和生态恢复提供支持 雅砻江流域(YLRB)的中长期径流 水文学 NA 随机森林(RF)、支持向量回归(SVR)、多层感知器回归(MLPR) 耦合模型(RF-SVR和RF-MLPR) 径流数据 四个水文站点的数据 NA NA NA NA
20465 2024-12-15
AMCFCN: attentive multi-view contrastive fusion clustering net
2024, PeerJ. Computer science
研究论文 本文提出了一种名为AMCFCN的新型多视图聚类网络,通过对比注意策略有效提取多视图数据中的鲁棒特征 引入了对比注意策略,能够在减少噪声的同时保留视图完整性,并提取一致的多视图表示 未提及具体限制 改进多视图聚类技术,提高聚类结果的准确性 多视图数据中的视图特定表示和一致表示 机器学习 NA 多视图聚类 AMCFCN 多视图数据 四个多视图数据集 NA NA NA NA
20466 2024-12-15
Detection of renal cell hydronephrosis in ultrasound kidney images: a study on the efficacy of deep convolutional neural networks
2024, PeerJ. Computer science
研究论文 本研究探讨了深度卷积神经网络在超声肾脏图像中自动检测肾细胞肾积水的有效性 提出了创新的Novel DCNN模型,在肾细胞肾积水检测中表现出色,准确率达到99.8% 需要进一步探索更大和更多样化的数据集以及不同的优化策略来提升模型的收敛率和准确性 利用深度学习模型自动检测超声图像中的肾细胞肾积水 超声肾脏图像中的肾细胞肾积水 计算机视觉 肾脏疾病 深度学习 DCNN 图像 NA NA NA NA NA
20467 2024-12-15
Double-target self-supervised clustering with multi-feature fusion for medical question texts
2024, PeerJ. Computer science
研究论文 本文提出了一种双目标自监督聚类与多特征融合的方法,用于医疗问题文本的聚类 本文创新性地融合了词频和词汇语义信息,并引入了自注意力机制来计算文本中每个词的权重,同时构建了两个目标函数来实现跨文档主题特征的融合 NA 构建一个端到端的文本聚类模型,以更好地表示医疗问题文本的信息 医疗领域中的问题文本 自然语言处理 NA 自监督学习 自注意力机制 文本 NA NA NA NA NA
20468 2024-12-15
Deep ocular tumor classification model using cuckoo search algorithm and Caputo fractional gradient descent
2024, PeerJ. Computer science
研究论文 本研究提出了一种结合Caputo分数梯度下降和布谷鸟搜索算法的优化器,用于提高眼肿瘤分类的准确性和收敛速度 创新点在于将Caputo分数梯度下降方法与布谷鸟搜索算法结合,提出了一种新的优化器,显著提高了分类准确性和收敛速度 研究仅使用了400张眼底图像进行训练和评估,样本量相对较小,可能影响模型的泛化能力 旨在开发一种用于眼肿瘤分类的鲁棒深度学习系统,并提出一种新的优化器以提高分类性能 研究对象为眼底图像中的良性和恶性眼肿瘤 计算机视觉 NA 深度学习 CNN 图像 400张眼底图像,分为良性和恶性两类 NA NA NA NA
20469 2024-12-15
Automated generation of process simulation scenarios from declarative control-flow changes
2024, PeerJ. Computer science
研究论文 本文提出了一种自动化生成业务流程模拟场景的方法,允许用户以声明方式指定控制流变化,并自动生成假设场景 本文的创新点在于使用生成式深度学习模型来自动生成符合用户指定控制流变化的模拟场景,从而简化了手动调整模拟模型的复杂性 本文的局限性在于数据驱动模拟方法在追求准确性时可能生成过于复杂的模型,增加了手动调整的难度 本文的研究目的是简化业务流程模拟中手动调整模拟模型的复杂性,特别是涉及控制流变化的场景 本文的研究对象是业务流程模拟模型及其在控制流变化下的调整 机器学习 NA 生成式深度学习模型 生成式深度学习模型 事件日志 NA NA NA NA NA
20470 2024-12-15
Deep learning-based information retrieval with normalized dominant feature subset and weighted vector model
2024, PeerJ. Computer science
研究论文 本文提出了一种基于深度学习的信息检索方法,使用归一化主导特征子集和加权向量模型进行特征提取和选择 提出了归一化主导特征子集和加权向量模型(NDFS-WVM),用于从大数据中进行信息检索,并展示了其在文本检索中的优越性能 需要大规模数据集进行训练,且手动创建有效特征集的过程较为耗时 改进信息检索中的特征提取和选择方法,提高文本检索的准确性 多媒体数据中的文本信息 自然语言处理 NA 深度学习 NDFS-WVM 文本 大规模数据集,包含数百万变量 NA NA NA NA
20471 2024-12-15
Performance enhancement in hydroponic and soil compound prediction by deep learning techniques
2024, PeerJ. Computer science
研究论文 本文提出了一种利用深度学习技术预测水培和土壤化合物动态的创新方法,以提高作物生产的可持续性和效率 本文创新性地利用深度学习技术预测水培和土壤化合物动态,采用迭代辅助增强母优化算法(IEMOA)获取权重特征,并通过多尺度特征融合卷积自编码器与门控循环单元(MS-CAGRU)网络进行预测 本文未提及具体的实验验证或实际应用效果,仅通过与传统模型的对比展示系统效能 开发数值模型以全面描述植物和土壤中化学物质的传输和反应,制定有效的缓解策略 水培和土壤化合物动态 机器学习 NA 深度学习 MS-CAGRU 数据 数据来自在线资源,具体样本量未提及 NA NA NA NA
20472 2024-12-15
Demand prediction for urban air mobility using deep learning
2024, PeerJ. Computer science
研究论文 本文研究了城市空中交通(UAM)需求预测问题,提出了一种基于深度学习的时间序列预测模型 本文首次使用Transformer模型进行UAM需求预测,并展示了其高性能 本文仅使用了单一的基准数据集,可能无法全面反映不同城市和地区的实际情况 探讨市场是否能够支持UAM的部署,并通过需求预测为决策者提供投资可行性和可行性分析 城市空中交通(UAM)的需求预测 机器学习 NA 深度学习 Transformer 时间序列数据 150,000条记录 NA NA NA NA
20473 2024-12-15
A bigura-based real time sentiment analysis of new media
2024, PeerJ. Computer science
研究论文 本文提出了一种基于BiGura多层模型的实时情感检测技术,用于新媒体数据的情感分析 本文采用了深度学习技术,相较于传统的贝叶斯和KNN分类器,在情感分析中表现出显著优势,分类准确率分别提高了3.88%和4.33% NA 实现更准确和实时的公众情感监测和舆论监控 新媒体数据中的文本和视频内容的情感分析 自然语言处理 NA 深度学习 BiGura 文本和视频 涉及不同病毒事件的案例,如加沙的入侵事件 NA NA NA NA
20474 2024-12-15
LRMAHpan: a novel tool for multi-allelic HLA presentation prediction using Resnet-based and LSTM-based neural networks
2024, Frontiers in immunology IF:5.7Q1
研究论文 本文介绍了一种名为LRMAHpan的新工具,用于使用基于Resnet和LSTM的神经网络进行多等位基因HLA呈递预测 LRMAHpan整合了LSTM网络和ResNet_CA网络,采用了一种新的pHLA编码方法,能够将新抗原预测任务集成到计算机视觉方法中,并有效捕捉结合信号 NA 开发一种能够准确预测多等位基因HLA呈递的工具,以促进新抗原疫苗设计 多等位基因HLA呈递预测和新抗原预测 计算机视觉 黑色素瘤 质谱数据 ResNet, LSTM 图像 转移性黑色素瘤患者队列 NA NA NA NA
20475 2024-12-15
Explainable light-weight deep learning pipeline for improved drought stress identification
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种用于识别马铃薯作物干旱胁迫的可解释轻量级深度学习管道 创新点在于结合预训练网络与精心设计的自定义层,并集成了基于梯度的可视化技术(如Grad-CAM),增强了模型的可解释性 NA 旨在提高作物干旱胁迫的识别精度,并为实时农业应用提供可解释的深度学习模型 马铃薯作物的干旱胁迫 计算机视觉 NA 深度学习 DenseNet121 图像 NA NA NA NA NA
20476 2024-12-15
Enhancing diagnosis of Hirschsprung's disease using deep learning from histological sections of post pull-through specimens: preliminary results
2023-Nov-29, Pediatric surgery international IF:1.5Q3
研究论文 本研究利用深度学习技术从回拉手术后的组织学切片中识别Hirschsprung病中的神经节细胞和肥大神经,以提高诊断准确性 首次使用AI技术基于U-net模型识别Hirschsprung病中的神经节细胞和肥大神经 研究样本量较小,且仅限于回拉手术后的组织学切片 开发一种基于人工智能的方法来提高Hirschsprung病的组织学诊断准确性 Hirschsprung病中的神经节细胞和肥大神经 数字病理学 Hirschsprung病 深度学习 U-net 图像 108个标注样本,数据增强后生成19,600张图像,最终用于训练和验证的图像为1945张 NA NA NA NA
20477 2024-12-15
Shared computational principles for language processing in humans and deep language models
2022-03, Nature neuroscience IF:21.2Q1
研究论文 本文探讨了人类大脑与自回归深度语言模型在处理语言时共享的计算原则 本文首次提供了人类大脑与自回归深度语言模型在处理自然叙事时共享三个基本计算原则的实证证据 NA 研究人类大脑与自回归深度语言模型在语言处理中的计算原则 人类大脑和自回归深度语言模型 自然语言处理 NA ECoG 自回归深度语言模型 文本 9名参与者 NA NA NA NA
20478 2024-12-15
Multimodality Imaging and Artificial Intelligence for Tumor Characterization: Current Status and Future Perspective
2020-Nov, Seminars in nuclear medicine IF:4.6Q1
研究论文 本文探讨了多模态影像与人工智能在肿瘤特征分析中的应用现状及未来展望 人工智能通过机器学习和深度学习,能够整合大量异质性数据进行分析,提供自动化和可重复的定量影像生物标志物 需要设定质量标准,包括影像采集的标准化、模型开发的透明性、验证和测试的高质量过程以及算法的更好可解释性 研究多模态影像与人工智能在肿瘤特征分析中的应用,以实现精准肿瘤学 肿瘤的特征分析和分子表达的非侵入性监测 计算机视觉 NA 机器学习,深度学习 NA 影像 NA NA NA NA NA
20479 2024-12-15
Nano-opto-electro-mechanical switches operated at CMOS-level voltages
2019-11-15, Science (New York, N.Y.)
研究论文 本文展示了在微米尺度的混合光子-等离子体结构中,利用光电机械效应在CMOS电压下实现光开关 本文首次展示了在CMOS电压下通过纳米级静电扰动实现快速光开关,并结合了光子和等离子体效应以最小化光学损耗 本文未详细讨论该技术的实际应用场景和大规模集成可能面临的挑战 探索在CMOS电压下实现光开关的技术,为集成光电子学提供新平台 微米尺度的混合光子-等离子体结构 NA NA 光电机械效应 NA NA NA NA NA NA NA
20480 2024-12-14
Brain structural connectomic topology predicts medication response in youth with bipolar disorder: A randomized clinical trial
2025-Feb-15, Journal of affective disorders IF:4.9Q1
研究论文 本研究探讨了大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的作用 首次研究了大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的价值,并提出了基于深度学习的预测模型 需要独立重复实验来验证初步发现 研究大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的作用 双相情感障碍青少年患者的大脑结构连接组拓扑结构 神经影像学 双相情感障碍 结构磁共振成像(MRI) 深度学习模型 图像 121名未接受过精神药物治疗的双相情感障碍I型青少年 NA NA NA NA
回到顶部