本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 20501 | 2025-10-07 |
Spatial and Compositional Biomarkers in Tumor Microenvironment Predicts Clinical Outcomes in Triple-Negative Breast Cancer
2023-Dec-20, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.18.572234
PMID:38187696
|
研究论文 | 通过单细胞分辨率成像质谱数据分析三阴性乳腺癌肿瘤微环境的生物标志物与临床预后关系 | 首次在TNBC中系统识别10个复发性细胞邻域,并发现细胞间邻域相互作用与生存改善相关 | 样本量相对有限(58例TNBC患者标本),深度学习模型预测准确度有待提升(平均AUC=0.71) | 探索三阴性乳腺癌肿瘤微环境特征与临床结果的关系 | 三阴性乳腺癌患者肿瘤组织标本 | 数字病理学 | 三阴性乳腺癌 | 成像质谱细胞术 | 深度学习模型 | 单细胞分辨率空间图像数据 | 58例TNBC患者标本,另包含NeoTRIP临床试验独立队列 | NA | NA | AUC | NA |
| 20502 | 2025-02-21 |
Severity grading of hypertensive retinopathy using hybrid deep learning architecture
2025-Apr, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108585
PMID:39862474
|
研究论文 | 本文提出了一种混合深度学习架构,用于高血压视网膜病变(HR)的严重程度分级 | 引入了一种结合预训练ResNet-50和修改后的Vision Transformer(ViT)架构的混合模型,通过全局和局部自注意力机制增强模型性能,并提出了基于解耦表示和分类器(DRC)的训练方法以解决类别不平衡问题 | 缺乏公开可用的HR分级数据集,且存在高类别不平衡问题 | 开发一种准确的高血压视网膜病变严重程度分级方法 | 高血压视网膜病变(HR)的严重程度分级 | 计算机视觉 | 高血压视网膜病变 | 深度学习 | 混合模型(ResNet-50 + 修改后的Vision Transformer) | 图像 | NA | NA | NA | NA | NA |
| 20503 | 2025-02-21 |
A bio-lattice deep learning framework for modeling discrete biological materials
2025-Apr, Journal of the mechanical behavior of biomedical materials
IF:3.3Q3
DOI:10.1016/j.jmbbm.2025.106900
PMID:39891961
|
研究论文 | 本文提出了一种基于机器学习的多尺度框架,结合深度神经网络(DNNs)、有限元方法(FEM)和受晶格弹簧模型(LSM)启发的微观结构描述,用于研究离散、空间异质材料的行为 | 提出了一种新颖的机器学习多尺度框架,结合DNNs、FEM和LSM,用于研究离散、空间异质材料的行为,并开发了一个无假设的晶格框架 | 未明确提及具体局限性 | 研究离散、空间异质材料的力学行为 | 生物组织的微观结构和宏观材料行为 | 机器学习 | NA | 深度神经网络(DNNs)、有限元方法(FEM)、晶格弹簧模型(LSM) | 深度神经网络(DNNs) | 微观结构数据 | NA | NA | NA | NA | NA |
| 20504 | 2025-02-21 |
ViroNia: LSTM based proteomics model for precise prediction of HCV
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109573
PMID:39733555
|
研究论文 | 本文介绍了ViroNia,一种基于LSTM的蛋白质组学模型,用于高精度预测HCV病毒蛋白分类 | ViroNia利用LSTM架构进行病毒蛋白分类,展示了其在分类任务中的高效性,并优于其他深度学习架构如Simple RNN、GRU、1d CNN和双向LSTM | 尽管ViroNia在分类任务中表现出色,但其在更广泛数据集上的泛化能力尚未验证 | 开发高精度的病毒蛋白分类模型,以支持病毒研究和干预设计 | HCV病毒蛋白 | 自然语言处理 | NA | LSTM | LSTM | 蛋白质序列 | 2250个蛋白质序列 | NA | NA | NA | NA |
| 20505 | 2025-02-21 |
Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109751
PMID:39884057
|
研究论文 | 本文提出了一种新的深度学习框架,用于提高乳腺癌早期检测的准确性 | 结合卷积神经网络(CNN)与特征选择和融合方法,自动从图像中学习并找到相关特征,从而超越现有方法 | 未提及具体的数据集大小或多样性限制 | 提高乳腺癌早期检测的准确性 | 乳腺癌的医学影像 | 计算机视觉 | 乳腺癌 | 深度学习 | CNN | 图像 | NA | NA | NA | NA | NA |
| 20506 | 2025-02-21 |
Deep learning image registration for cardiac motion estimation in adult and fetal echocardiography via a focus on anatomic plausibility and texture quality of warped image
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109719
PMID:39884059
|
研究论文 | 本文提出了一种深度学习图像配准方法,用于成人和胎儿超声心动图中的心脏运动估计,重点关注变形图像的解剖合理性和纹理质量 | 提出了一种新的深度学习图像配准框架,通过引入解剖形状编码约束和数据驱动的纹理约束,提高了变形图像的解剖合理性和纹理质量 | 尽管方法在成人和胎儿超声心动图中表现出色,但未提及在其他类型医学图像上的适用性 | 提高超声心动图中心脏运动估计的准确性和一致性 | 成人和胎儿超声心动图 | 计算机视觉 | 心血管疾病 | 深度学习图像配准(DLIR) | 深度学习模型 | 图像 | 多人口胎儿数据集和公共CAMUS成人数据集 | NA | NA | NA | NA |
| 20507 | 2025-02-21 |
A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109768
PMID:39891957
|
研究论文 | 本文比较了统计、放射组学和深度学习特征提取技术在医学图像分类中的应用效果 | 通过对比不同特征提取技术在多种医学影像模态下的表现,揭示了深度学习技术在准确性和速度上的优势 | 研究仅针对二分类问题,未涉及多分类或更复杂的医学图像分析任务 | 评估不同特征提取技术对医学图像分类模型性能的影响 | H&E染色图像、胸部X光片和视网膜OCT图像 | 计算机视觉 | NA | 统计特征提取、放射组学特征提取、深度学习特征提取 | PCA-LDA, ResNet50, DenseNet121 | 图像 | NA | NA | NA | NA | NA |
| 20508 | 2025-02-21 |
Atomic force microscopy combined with microfluidics for label-free sorting and automated nanomechanics of circulating tumor cells in liquid biopsy
2025-Feb-20, Nanoscale
IF:5.8Q1
DOI:10.1039/d4nr04033c
PMID:39865849
|
研究论文 | 本文介绍了一种结合原子力显微镜(AFM)和微流控技术的无标记分选和自动化纳米力学测量方法,用于液体活检中的循环肿瘤细胞(CTCs)研究 | 创新点在于结合AFM和微流控技术,实现了CTCs的无标记分选和自动化纳米力学测量,为临床提供了新的可能性 | 研究仍处于概念验证阶段,样本量有限,需要进一步验证和优化 | 研究目的是开发一种高效测量液体活检中CTCs机械性能的方法,以推动癌症管理 | 研究对象为液体活检中的循环肿瘤细胞(CTCs) | 数字病理学 | 癌症 | 原子力显微镜(AFM)、微流控技术、深度学习光学图像识别模型 | 深度学习模型 | 图像、力学数据 | 三个实验样本系统,包括不同大小的混合微球、不同类型癌细胞的混合物以及癌细胞和血细胞的混合物 | NA | NA | NA | NA |
| 20509 | 2025-02-21 |
EBHOA-EMobileNetV2: a hybrid system based on efficient feature selection and classification for cardiovascular disease diagnosis
2025-Feb-19, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2025.2466081
PMID:39970065
|
研究论文 | 本文提出了一种基于深度学习的智能医疗框架,用于心血管疾病的诊断,结合了有效的特征选择和分类技术 | 结合了增强的二进制蝗虫优化算法(EBHOA)和增强的MobileNetV2模型(EMobileNetV2),以提高心血管疾病预测的准确性和一致性 | 未提及模型在其他数据集上的泛化能力,以及在实际临床环境中的应用效果 | 提高心血管疾病预测的准确性,以改善临床实践和患者护理 | 心血管疾病(CVD)患者 | 机器学习 | 心血管疾病 | 增强的二进制蝗虫优化算法(EBHOA)、增强的MobileNetV2模型(EMobileNetV2) | EMobileNetV2 | 结构化数据 | UCI Heart Disease和Framingham Heart Study数据集 | NA | NA | NA | NA |
| 20510 | 2025-02-21 |
Mental Health Screening Using the Heart Rate Variability and Frontal Electroencephalography Features: A Machine Learning-Based Approach
2025-Feb-19, JMIR mental health
IF:4.8Q1
DOI:10.2196/72803
PMID:39971280
|
研究论文 | 本研究探讨了使用心率和前额脑电图特征进行心理健康筛查的机器学习方法 | 结合心率和前额脑电图特征进行心理健康筛查,展示了可能的协同效应 | 需要进一步研究以预测治疗反应并基于基线生理标志物提出优选治疗方案 | 探讨心率和前额脑电图特征在机器学习算法中对精神病患者和健康对照者的分类准确性 | 182名参与者(87名精神病患者和95名健康对照者) | 机器学习 | 精神疾病 | 支持向量机(SVM) | SVM | 生理信号(心率和脑电图) | 182名参与者(87名精神病患者和95名健康对照者) | NA | NA | NA | NA |
| 20511 | 2025-02-21 |
Artificial Intelligence for Diabetic Foot Screening Based on Digital Image Analysis: A Systematic Review
2025-Feb-17, Journal of diabetes science and technology
IF:4.1Q2
DOI:10.1177/19322968251317521
PMID:39960227
|
系统综述 | 本文系统回顾了基于数字图像分析的人工智能技术在糖尿病足筛查中的应用 | 探讨了人工智能在糖尿病足筛查中的潜力,特别是深度学习方法的应用 | 需要进一步评估临床适用性,包括伦理问题和患者数据安全性,以及开发更全面的数据集 | 识别并分析使用数字图像分析开发AI模型进行糖尿病足筛查的研究 | 糖尿病足筛查 | 计算机视觉 | 糖尿病 | 数字图像分析 | 人工神经网络(ANNs)和卷积神经网络(CNNs) | 热成像或足部热图 | 2214篇相关文章,其中9篇符合纳入标准 | NA | NA | NA | NA |
| 20512 | 2025-02-21 |
Super-resolution synthetic MRI using deep learning reconstruction for accurate diagnosis of knee osteoarthritis
2025-Feb-17, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-025-01911-z
PMID:39961957
|
研究论文 | 本研究评估了深度学习重建(DLR)技术在合成MRI(SyMRI)上的准确性,包括T2测量和DLR合成MRI(SyMRIDL)在膝关节骨关节炎(KOA)患者中的诊断性能,以常规MRI为标准参考 | 使用深度学习重建技术生成合成MRI图像,提供准确的T2测量值,能够更自信地从正常外观的软骨中识别早期软骨退化 | 样本量相对较小(36名志愿者和70名患者),且研究时间较短(2023年5月至10月) | 评估DLR合成MRI在膝关节骨关节炎诊断中的准确性和性能 | 膝关节骨关节炎患者和志愿者 | 医学影像 | 膝关节骨关节炎 | 深度学习重建(DLR),合成MRI(SyMRI) | 深度学习模型 | MRI图像 | 36名志愿者和70名患者 | NA | NA | NA | NA |
| 20513 | 2025-02-21 |
Multi-label software requirement smells classification using deep learning
2025-Feb-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-86673-w
PMID:39962114
|
研究论文 | 本研究开发了一种基于深度学习的多标签软件需求异味分类模型,用于检测单个需求中的多种软件需求异味 | 首次将LSTM、Bi-LSTM和GRU等高级神经网络架构与ELMo和Word2Vec等词嵌入技术结合,用于多标签软件需求异味分类 | 研究仅基于8120个需求数据集,可能无法覆盖所有类型的软件需求异味 | 提高软件需求异味检测的自动化水平,减少人工检测的时间和错误 | 软件需求异味 | 自然语言处理 | NA | 深度学习 | LSTM, Bi-LSTM, GRU | 文本 | 8120个需求数据集 | NA | NA | NA | NA |
| 20514 | 2025-02-21 |
A deep learning framework based on structured space model for detecting small objects in complex underwater environments
2025-Feb-17, Communications engineering
DOI:10.1038/s44172-025-00367-9
PMID:39962196
|
研究论文 | 本文提出了一种结合结构化空间模型(SSM)与特征增强的创新方法,专门用于复杂水下环境中的小目标检测 | 结合结构化空间模型(SSM)与特征增强,开发了高精度、轻量级的检测模型UWNet,显著提高了计算效率并保持了高检测精度 | 未提及具体局限性 | 解决水下目标检测中精度与模型效率及实时性能的平衡问题 | 水下环境中的小目标,如海星和扇贝 | 计算机视觉 | NA | 结构化空间模型(SSM)与特征增强 | UWNet | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
| 20515 | 2025-02-21 |
Stacked encoding and AutoML-based identification of lead-zinc small open pit active mines around Rampura Agucha in Rajasthan state, India
2025-Feb-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-89672-z
PMID:39962260
|
研究论文 | 本研究旨在通过Sentinel 2图像分析,利用机器学习算法检测和分类印度拉贾斯坦邦Rampura Agucha周围的铅锌露天矿区域 | 结合多种波段比率和光谱指数,使用深度学习堆叠编码器和15种不同的机器学习分类器,提高了复杂矿区及其周边地物特征的检测精度 | 研究仅限于Sentinel 2图像数据,未涉及其他遥感数据源 | 检测和分类铅锌露天矿区域及其周边地物特征 | 印度拉贾斯坦邦Rampura Agucha周围的铅锌露天矿区域 | 机器学习 | NA | Sentinel 2图像分析 | extra tree classifier (et), light gradient boosting machine classifier (lightgbm), random forest classifier (rf) | 卫星图像 | NA | NA | NA | NA | NA |
| 20516 | 2025-02-21 |
Deep convolutional neural network-based enhanced crowd density monitoring for intelligent urban planning on smart cities
2025-Feb-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90430-4
PMID:39962323
|
研究论文 | 本文提出了一种基于深度卷积神经网络的增强型人群密度监测技术,用于智能城市规划 | 提出了DCNNCDM-IUP技术,结合SE-DenseNet和ConvLSTM方法,通过红狐优化算法进行超参数选择,提高了人群密度监测的准确性 | 未提及具体的数据集规模或实际应用中的潜在挑战 | 开发一种高效的人群密度监测技术,以支持智能城市的交通管理、公共安全和城市规划 | 智能城市中的人群密度监测 | 计算机视觉 | NA | 深度学习(DL)、高斯滤波(GF)、红狐优化(RFO) | SE-DenseNet、ConvLSTM | 图像、时间序列数据 | 未提及具体样本数量 | NA | NA | NA | NA |
| 20517 | 2025-02-21 |
Comparison of YOLO-based sorghum spike identification detection models and monitoring at the flowering stage
2025-Feb-17, Plant methods
IF:4.7Q1
DOI:10.1186/s13007-025-01338-z
PMID:39962585
|
研究论文 | 本研究比较了基于YOLO的高粱穗识别检测模型,并评估了其在开花期的监测效果 | 首次对不同高度和天气条件下的YOLO模型性能进行了比较研究,并确定了YOLOv8m为最有效的模型 | 研究仅基于2023年采集的图像数据,未考虑更多年份或更广泛的环境条件 | 评估数据集大小对模型准确性的影响,并预测高粱开花期 | 高粱开花期的穗识别 | 计算机视觉 | NA | 无人机图像采集 | YOLOv5, YOLOv8, YOLOv9, YOLOv10 | 图像 | 200到350张图像,分别在15米和30米高度采集 | NA | NA | NA | NA |
| 20518 | 2025-02-21 |
Exploring autonomous methods for deepfake detection: A detailed survey on techniques and evaluation
2025-Feb-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42273
PMID:39968137
|
综述 | 本文对深度伪造检测的自主方法进行了详细调查,分析了相关技术和评估方法 | 本文综合了2018年至2024年间的最新研究,探讨了利用先进机器学习、计算机视觉和音频分析技术的创新检测方法 | 研究仅限于2018年至2024年间的最新研究,可能未涵盖早期的重要进展 | 提高数字生态系统的安全性和意识,通过推进对自主检测和评估方法的理解 | 深度伪造媒体(图像、视频和音频) | 计算机视觉 | NA | 深度学习模型 | NA | 图像、视频、音频 | NA | NA | NA | NA | NA |
| 20519 | 2025-02-21 |
Diagnosis Anthracnose of Chili Pepper Using Convolutional Neural Networks Based Deep Learning Models
2025-Feb, The plant pathology journal
DOI:10.5423/PPJ.OA.11.2024.0178
PMID:39916419
|
研究论文 | 本研究应用深度学习模型(MobileNet、ResNet50v2和Xception)通过迁移学习诊断辣椒炭疽病,旨在确定准确和高效疾病诊断所需的最小数据集大小 | 通过迁移学习方法,评估不同数据集大小对模型性能的影响,为农业应用中的数据可用性和模型性能平衡提供实用指南 | 需要大量标注数据集,获取成本较高 | 研究辣椒炭疽病的早期和准确检测方法,以减少产量损失和市场价值下降 | 辣椒(Capsicum annuum L.) | 计算机视觉 | 植物病害 | 迁移学习 | CNN(MobileNet、ResNet50v2、Xception) | 图像 | 500、1,000、2,000、3,000和4,000个样本 | NA | NA | NA | NA |
| 20520 | 2025-02-21 |
Automated Segmentation of Trunk Musculature with a Deep CNN Trained from Sparse Annotations in Radiation Therapy Patients with Metastatic Spine Disease
2025-Jan-20, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.01.13.25319967
PMID:39974027
|
研究论文 | 本研究提出了一种深度学习方法,用于从临床CT图像中分割躯干肌肉的完整体积,使用稀疏注释数据进行训练 | 使用稀疏注释数据训练的2D nnU-Net模型成功分割了癌症患者临床CT数据中20个胸腰椎肌肉的整个体积,显著提高了分割效率和泛化能力 | 模型仅在148名癌症患者的CT图像上进行了训练和验证,可能需要更多样化的数据集来进一步提高模型的泛化能力 | 量化由于疾病或治疗引起的肌肉变化,并支持生物力学建模以评估椎体负荷,从而改善椎体骨折风险的个性化评估 | 148名癌症患者的临床CT图像 | 数字病理学 | 脊柱转移性疾病 | CT成像 | 2D nnU-Net | 图像 | 148名癌症患者的2,009张轴向CT图像 | NA | NA | NA | NA |