深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25309 篇文献,本页显示第 20721 - 20740 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
20721 2024-08-13
Early transcriptomic signatures and biomarkers of renal damage due to prolonged exposure to embedded metal
2023-12, Cell biology and toxicology IF:5.3Q1
研究论文 研究通过高吞吐量转录组学和深度学习方法,探讨了长期暴露于嵌入金属导致的早期肾损伤的转录组特征和生物标志物 结合高吞吐量转录组学和深度学习技术,有效识别受金属暴露影响的肾细胞,并发现miRNA-423作为潜在的早期肾损伤血清生物标志物 NA 识别和检测长期暴露于嵌入金属导致的早期肾损伤 肾组织和血清样本中的RNA序列 数字病理学 肾损伤 RNA测序 深度学习 RNA序列数据 使用大鼠模型进行实验
20722 2024-08-13
Small whole heart volume predicts cardiovascular events in patients with stable chest pain: insights from the PROMISE trial
2021-Aug, European radiology IF:4.7Q1
研究论文 本研究评估了从非对比心脏计算机断层扫描(CT)中提取的三维全心脏体积(WHV)在稳定胸痛患者中预测主要心血管事件(MACE)的预后价值 小全心脏体积可能是一个新的影像学标志物,用于稳定胸痛患者中预测主要心血管事件 NA 评估三维全心脏体积在稳定胸痛患者中预测主要心血管事件的预后价值 稳定胸痛患者 数字病理学 心血管疾病 计算机断层扫描(CT) 深度学习 影像 3798名患者
20723 2024-08-13
Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA
2021-Aug, European radiology IF:4.7Q1
研究论文 本文比较了从常规CT中自动和手动评估的脊柱骨测量与双能X线吸收法(DXA)在关联现有骨质疏松性椎体骨折方面的表现,使用完全自动化的框架评估临床CT中的各种骨测量。 本文引入了用于骨质疏松症和低骨量的整体体积骨密度(vBMD)的诊断阈值,并展示了CT基础测量在识别经历过椎体骨折的骨量减少个体方面优于DXA。 NA 比较常规CT和DXA在预测现有骨质疏松性椎体骨折方面的效果。 192名患者(141名女性,51名男性;年龄70.2 ± 9.7岁)的脊柱骨测量。 数字病理学 骨质疏松症 卷积神经网络(CNN) CNN 图像 192名患者
20724 2024-08-13
A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions
2021-07-09, Nature communications IF:14.7Q1
研究论文 本文提出了一种名为CLOPS的持续学习策略,用于解决临床环境中深度学习算法在处理非独立同分布数据时性能下降的问题 CLOPS策略通过使用回放缓冲区和基于不确定性的获取函数,有效减轻了破坏性干扰,并在多种临床场景中表现优于现有方法 NA 旨在开发一种能够持续学习并保持性能稳定的临床深度学习框架 心脏信号数据,涉及不同疾病、时间、数据模态和医疗机构 机器学习 心血管疾病 深度学习 深度学习系统 信号 NA
20725 2024-08-13
Super-compression of large electron microscopy time series by deep compressive sensing learning
2021-Jul-09, Patterns (New York, N.Y.)
研究论文 本文提出了一种结合深度学习和时间压缩感知(TCS)的电子显微镜(EM)大数据压缩策略 利用端到端深度学习网络和TCS技术,实现了高压缩比(最高达30倍)且高质量的图像重建 NA 解决电子显微镜高速检测带来的大数据处理和存储挑战 电子显微镜图像序列的压缩与重建 计算机视觉 NA 深度学习, 时间压缩感知(TCS) 深度学习网络 图像 NA
20726 2024-08-13
A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos
2021-07, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
研究论文 本文提出了一种用于自动分割和分类小鼠胚胎高频超声图像的深度学习流程 采用两阶段框架进行分割,显著减少了推理时间并保持高精度;通过梯度反向传播,训练的分类器能够聚焦于已知遗传突变表型的区域 NA 开发一种准确、高效且可解释的深度学习方法,用于小鼠胚胎脑室和身体的自动分割与分类 小鼠胚胎的高频超声图像 计算机视觉 NA 高频超声(HFU) 卷积神经网络(CNN) 图像 NA
20727 2024-08-13
A comparison of the fusion model of deep learning neural networks with human observation for lung nodule detection and classification
2021-Jul-01, The British journal of radiology
研究论文 本研究比较了深度学习神经网络融合模型与人类观察者在肺结节检测和分类中的诊断性能 提出了一种使用四种先进对象检测器的融合模型,用于肺结节的检测和鉴别 融合AI算法在估计恶性风险方面的表现略低于观察者 比较新开发的人工智能算法与人类观察者在肺结节恶性风险估计中的诊断性能 158个来自158名患者的肺结节 机器学习 肺癌 卷积神经网络(CNN) 融合模型 图像 158个结节(81个良性,77个恶性)
20728 2024-08-13
Early prediction of diagnostic-related groups and estimation of hospital cost by processing clinical notes
2021-Jul-01, NPJ digital medicine IF:12.4Q1
研究论文 本文研究使用深度学习自然语言处理模型在患者入院早期预测诊断相关分组(DRG)和估计医院成本 提出了一种基于深度学习的自然语言处理模型,能够在患者入院早期自动预测DRG和相应的成本反映权重,无需人工编码 模型在模拟患者群体中的准确性随时间增加,但具体的临床应用效果和泛化能力需要进一步验证 旨在通过早期预测DRG和估计医院成本,支持医院更好的运营决策 研究对象为接受Medicare Severity DRG或All Patient Refined DRG支付的两个队列 自然语言处理 NA 深度学习 自然语言处理模型 文本 两个队列的数据,具体样本量未详细说明
20729 2024-08-13
Deep learning techniques have significantly impacted protein structure prediction and protein design
2021-06, Current opinion in structural biology IF:6.1Q1
研究论文 本文探讨了深度学习技术在蛋白质结构预测和蛋白质设计中的应用及其显著影响 文章介绍了深度神经网络在空间约束预测和端到端模型训练中的应用,显著提高了蛋白质结构预测的准确性,并在蛋白质设计领域取得了显著进步 NA 研究深度学习技术如何影响蛋白质结构预测和蛋白质设计 蛋白质结构预测和蛋白质设计 机器学习 NA 深度神经网络 深度神经网络 NA NA
20730 2024-08-13
Deep Learning to Predict Cardiac Magnetic Resonance-Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs
2021-06, Circulation. Cardiovascular imaging
研究论文 本研究利用深度学习模型从12导联心电图预测心脏磁共振成像(CMR)衍生的左心室质量及肥厚情况 本研究提出了一种新的深度学习模型,通过12导联心电图预测CMR衍生的左心室质量,可能改善左心室肥厚的检测 NA 研究目的是通过深度学习模型提高从12导联心电图预测左心室肥厚的准确性 研究对象包括UK Biobank前瞻性队列中的32,239名接受CMR和12导联心电图检查的个体 机器学习 心血管疾病 卷积神经网络 CNN 心电图数据 训练集包含32,239名个体,独立测试集包含UK Biobank的4,903名个体和Mass General Brigham的1,371名个体
20731 2024-08-13
Automatic classification of esophageal disease in gastroscopic images using an efficient channel attention deep dense convolutional neural network
2021-Jun-01, Biomedical optics express IF:2.9Q2
研究论文 本文提出了一种高效的通道注意力深度密集卷积神经网络(ECA-DDCNN),用于自动分类胃镜图像中的四种主要食管疾病类别 本文的创新点在于提出了一种新的ECA-DDCNN模型,能够分类更多种类的食管疾病,并提高了分类准确性 NA 提高食管疾病的诊断效率和准确性 食管疾病的自动分类 计算机视觉 食管癌 深度学习 ECA-DDCNN 图像 20,965张胃镜图像,来自4,077名患者
20732 2024-08-13
Diagnostic Performance of Artificial Intelligence-Based Models for the Detection of Early Esophageal Cancers in Barret's Esophagus: A Meta-Analysis of Patient-Based Studies
2021-Jun, Cureus
meta-分析 本研究旨在通过meta分析评估人工智能模型在实时白光内镜下检测Barret食管中早期食管腺癌的诊断性能 利用人工智能模型提高Barret食管中早期食管腺癌的诊断准确性 研究数量较少,需要进一步的前瞻性研究来验证人工智能模型的患者基础诊断准确性 评估人工智能模型在检测Barret食管中早期食管腺癌的诊断性能 Barret食管患者中的早期食管腺癌 机器学习 食管癌 人工智能 CNN 图像 共纳入3项研究,报告了4个数据集
20733 2024-08-13
Investigating the Impact of the Bit Depth of Fluorescence-Stained Images on the Performance of Deep Learning-Based Nuclei Instance Segmentation
2021-May-27, Diagnostics (Basel, Switzerland)
研究论文 研究了荧光染色图像的位深度对基于深度学习的细胞核实例分割性能的影响 首次探讨了图像位深度对基于深度学习的细胞核实例分割性能的影响 NA 评估不同位深度的荧光染色图像对细胞核实例分割性能的影响 细胞核实例分割性能 计算机视觉 NA 深度学习 DL-based methods 图像 来自五个不同小鼠器官的荧光染色组织图像
20734 2024-08-13
Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic
2021, PloS one IF:2.9Q1
研究论文 本文研究了在COVID-19大流行前后使用贝叶斯神经网络进行股票价格多步预测的可行性 采用了带有并行回火MCMC的朗之万梯度法,能够在并行计算环境中实施贝叶斯神经网络的推断 由于参数数量多和需要更好的计算资源,传统的MCMC方法存在局限性 探讨在COVID-19大流行期间股票市场波动性增加的情况下,贝叶斯神经网络在股票价格预测中的表现 股票价格预测模型在COVID-19大流行前后的表现 机器学习 NA 贝叶斯神经网络 贝叶斯神经网络 股票市场数据 具体样本数量未明确
20735 2024-08-13
Perceived Teacher Autonomy Support and Students' Deep Learning: The Mediating Role of Self-Efficacy and the Moderating Role of Perceived Peer Support
2021, Frontiers in psychology IF:2.6Q2
研究论文 本研究旨在探讨自我效能在大学生感知教师自主支持与深度学习之间的中介作用,以及学生感知到的同伴支持是否能调节感知教师自主支持与深度学习之间的关系 研究首次探讨了自我效能在感知教师自主支持与深度学习之间的中介作用,以及同伴支持的调节作用 研究样本仅来自贵州省一所本科师范大学的1800名大学生,可能限制了结果的普遍性 测试自我效能的中介作用及同伴支持的调节作用 大学生感知教师自主支持、自我效能、同伴支持与深度学习之间的关系 NA NA 描述性分析、相关分析、探索性因子分析、验证性因子分析、调节效应分析和中介效应分析 NA 调查数据 1800名大学生
20736 2024-08-12
A knowledge-enhanced interpretable network for early recurrence prediction of hepatocellular carcinoma via multi-phase CT imaging
2024-Sep, International journal of medical informatics IF:3.7Q2
研究论文 本文提出了一种基于多相CT影像的知识增强型可解释网络,用于预测肝细胞癌的早期复发 引入了一种新的基于Vision Transformer(ViT)的深度学习网络DSViT,增强了领域知识与图像之间的交互和多相CT图像的有效融合,提高了预测性能和解释性 NA 提高肝细胞癌早期复发预测的性能和解释性 肝细胞癌的早期复发预测 计算机视觉 肝癌 深度学习 Vision Transformer(ViT) 图像 多相CT数据
20737 2024-08-12
Deep learning-based computer-aided diagnosis system for the automatic detection and classification of lateral cervical lymph nodes on original ultrasound images of papillary thyroid carcinoma: a prospective diagnostic study
2024-Sep, Endocrine IF:3.0Q2
研究论文 本研究旨在开发一种基于深度学习的计算机辅助诊断系统,用于自动检测和分类甲状腺乳头状癌患者的颈部淋巴结超声图像 本研究采用了Deformable Detection Transformer (DETR)模型,该模型在检测和分类颈部淋巴结方面表现出最高的诊断效能 NA 开发一种基于深度学习的计算机辅助诊断系统,用于自动检测和分类甲状腺乳头状癌患者的颈部淋巴结超声图像 甲状腺乳头状癌患者的颈部淋巴结超声图像 计算机视觉 甲状腺癌 深度学习 DETR 图像 回顾性数据集包含1801张颈部淋巴结超声图像来自1675名患者,前瞻性测试集包含185张图像来自160名患者
20738 2024-08-12
Deep learning classification of drug-related problems from pharmaceutical interventions issued by hospital clinical pharmacists during medication prescription review: a large-scale descriptive retrospective study in a French university hospital
2024-Aug-09, European journal of hospital pharmacy : science and practice IF:1.6Q3
研究论文 本研究利用新开发的深度神经网络分类器,从法国某大学医院的临床药师在处方审查期间提出的药学干预中识别药物相关问题,并进行大规模回顾性描述性分析 使用深度神经网络分类器自动分类药物相关问题,无需大量人力资源 NA 利用深度神经网络分类器识别药物相关问题,并进行大规模回顾性描述性分析 药学干预中的药物相关问题 机器学习 NA 深度神经网络 深度神经网络分类器 文本 分析了2,930,656条处方记录,涉及119,689名患者
20739 2024-08-12
Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy
2024-Aug-08, Nature communications IF:14.7Q1
研究论文 本文介绍了一种基于深度学习的紧束缚方法DeePTB,用于在有限温度下进行具有从头计算精度的大规模电子行为模拟 DeePTB模型通过训练结构数据和相应的从头计算本征值,能够高效预测未见结构的紧束缚哈密顿量,实现对大尺寸系统在外部扰动下的高效模拟 NA 解决在从头计算框架内模拟具有现实大系统尺寸的材料和设备中电子行为的计算强度问题 半导体带隙工程和材料设计 材料科学 NA 深度学习 深度学习模型 结构数据和本征值 包含10个原子的镓磷化物系统
20740 2024-08-12
Implementing heuristic-based multiscale depth-wise separable adaptive temporal convolutional network for ambient air quality prediction using real time data
2024-Aug-08, Scientific reports IF:3.8Q1
研究论文 本研究利用深度学习架构开发了一种先进的系统,用于预测环境空气质量,通过使用多尺度深度可分离自适应时间卷积网络(MDS-ATCN)结合融合欧亚蛎鹬路径查找器算法(FEO-PFA)进行特征选择和优化 本研究采用了一种新的深度学习模型MDS-ATCN,并结合FEO-PFA算法进行特征选择和优化,提高了预测精度 NA 开发一种新的深度学习模型,用于提高环境空气质量预测的准确性 环境空气质量预测 机器学习 NA 深度学习 多尺度深度可分离自适应时间卷积网络(MDS-ATCN) 实时数据 使用了三个公开数据库和现实世界数据,具体样本数量未详细说明
回到顶部