深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26657 篇文献,本页显示第 20901 - 20920 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
20901 2024-08-30
A novel approach based on combining deep learning models with statistical methods for COVID-19 time series forecasting
2022, Neural computing & applications IF:4.5Q2
研究论文 本文提出了一种结合深度学习模型与统计方法的新方法,用于COVID-19时间序列预测 使用时间序列增强技术创建新的时间序列,以提高深度学习模型的性能 未提及具体限制 提高COVID-19感染病例预测的准确性,以便做出更有效的控制措施决策 COVID-19感染病例的时间序列数据 机器学习 COVID-19 时间序列增强技术 LSTM, GRU, CNN 时间序列数据 未提及具体样本数量
20902 2024-08-30
Outbreak COVID-19 in Medical Image Processing Using Deep Learning: A State-of-the-Art Review
2022, Archives of computational methods in engineering : state of the art reviews IF:9.7Q1
综述 本文综述了深度学习技术在医学影像处理中应对COVID-19疫情的应用 探讨了深度学习在医学影像如X射线、CT扫描和磁共振成像中的应用,以对抗COVID-19疫情 介绍了在控制健康危机和疫情爆发中遇到的一些问题和挑战 讨论深度学习技术在医学影像处理中的应用,特别是针对COVID-19的预测、传播迹象检测、治疗方面和疫苗研究 COVID-19疫情及其在医学影像处理中的应用 计算机视觉 COVID-19 深度学习 NA 图像 NA
20903 2024-08-30
Adaptive UNet-based Lung Segmentation and Ensemble Learning with CNN-based Deep Features for Automated COVID-19 Diagnosis
2022, Multimedia tools and applications IF:3.0Q2
研究论文 本文提出了一种基于自适应U-Net的肺部分割方法和基于CNN深度特征的集成学习方法,用于自动化COVID-19诊断。 本文引入了自适应激活函数(AAF)的U-Net进行肺部分割,并采用自适应海鞘群算法(SA-TSA)作为提升算法,以提高分割和检测性能。 NA 开发一种自动化COVID-19检测方法,以提高诊断的准确性和效率。 COVID-19疾病的自动化检测。 计算机视觉 COVID-19 卷积神经网络(CNN) U-Net, 集成学习 图像 胸部X射线图像
20904 2024-08-30
Real time deep learning framework to monitor social distancing using improved single shot detector based on overhead position
2022, Earth science informatics IF:2.7Q2
研究论文 本文介绍了一种基于改进的单次检测器和深度学习技术的实时框架,用于通过远程传感顶视图图像自动监测社交距离 提出了一种新的深度学习框架,使用改进的单次检测器模型来自动识别人们是否保持社交距离 NA 开发一种自动监测社交距离的深度学习框架,以应对COVID-19疫情的传播 社交距离的自动监测 计算机视觉 NA 深度学习 单次检测器 图像 广泛收集的远程传感图像
20905 2024-08-30
MEDAS: an open-source platform as a service to help break the walls between medicine and informatics
2022, Neural computing & applications IF:4.5Q2
研究论文 本文介绍了一个名为MEDAS的开源平台,旨在促进医学与信息学领域的深度学习技术在医学图像分析中的应用与合作 MEDAS是首个为医学背景的研究人员提供深度学习工具包的开放源代码平台,同时为信息学领域的科学家和工程师提供快速建模服务 NA 打破医学与信息学之间的壁垒,促进两个领域的研究人员在医学图像分析中的合作 医学图像分析中的分割、分类、检测等任务 数字病理学 NA 深度学习 DL相关工具包 图像 涉及肺、肝、脑、胸和病理学五个任务的验证
20906 2024-08-30
A holistic overview of deep learning approach in medical imaging
2022, Multimedia systems IF:3.5Q1
综述 本文综述了深度学习技术在医学影像分析中的应用及其不同医学影像模态,旨在为医学领域的非专家提供深度学习概念的贡献 介绍了深度学习技术在医学影像分析中的多种应用,如分割、分类、检测等,并讨论了基本架构、数据增强、迁移学习和特征选择方法 文章提出了一些研究挑战和文献中建议的解决方案,但未具体阐述这些挑战的具体内容和解决方案的实施细节 旨在综述深度学习技术在医学影像分析中的最新进展,并为医学领域的非专家提供深度学习概念的贡献 深度学习技术及其在医学影像分析中的应用 计算机视觉 NA 深度学习 CNN 图像 NA
20907 2024-08-30
Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images
2022, Neural processing letters IF:2.6Q3
研究论文 本文提出了一种使用Remora优化算法的多阈值图像分割技术,用于从眼底图像中检测糖尿病视网膜病变 本文引入了基于多阈值的Remora优化算法进行血管分割,并使用带有野鹅算法的区域卷积神经网络进行特征提取和分类 NA 旨在开发一种新的框架用于糖尿病视网膜病变的检测和分类 糖尿病视网膜病变及其不同阶段 计算机视觉 糖尿病视网膜病变 多阈值图像分割技术 区域卷积神经网络(R-CNN) 图像 实验图像来自DRIVE数据库
20908 2024-08-30
The winter, the summer and the summer dream of artificial intelligence in law: Presidential address to the 18th International Conference on Artificial Intelligence and Law
2022, Artificial intelligence and law IF:3.1Q1
演讲 本文是作者作为IAAIL主席在ICAIL 2021上的演讲,旨在阐述AI与法律领域的现状及未来展望 提出了结合自下而上的机器/深度学习与NLP方法和自上而下的法律知识表示及推理模型的方法,以促进语义网和AI系统的发展 提到了AI发展的技术机遇和理论限制 探讨AI与法律领域的历史变迁、现状及未来发展方向 AI与法律领域的研究及其在语义网和AI系统中的应用 人工智能 NA 机器学习, 深度学习, NLP NA 文本 NA
20909 2024-08-30
Deep learning techniques to classify agricultural crops through UAV imagery: a review
2022, Neural computing & applications IF:4.5Q2
综述 本文综述了使用无人机影像进行农作物分类的深度学习技术,特别是基于卷积神经网络的方法 融合不同无人机数据和深度学习方法已成为准确分类不同作物类型的强大工具 NA 帮助研究人员和农民根据其研究的作物和使用的硬件选择合适的算法 农作物分类 计算机视觉 NA 深度学习 CNN 图像 NA
20910 2024-08-30
Quantifying prognosis severity of COVID-19 patients from deep learning based analysis of CT chest images
2022, Multimedia tools and applications IF:3.0Q2
研究论文 本文提出了一种基于深度学习的CT胸部图像分析技术,用于量化COVID-19患者的预后严重程度 使用预训练的孪生神经网络(SNN)进行COVID-19阳性患者的检测,并通过去除高度相似的图像来提高数据集的质量 最终的多分类问题仅获得了47%的加权平均F1分数,表明在患者优先级排序方面仍有改进空间 开发一种新的技术来帮助医疗人员对COVID-19患者进行严重程度评估和优先级排序 COVID-19患者的CT胸部图像 计算机视觉 COVID-19 孪生神经网络(SNN) CNN 图像 使用了经过医学专家标注的CT胸部扫描切片图像数据集,去除了40%的高度相似图像
20911 2024-08-30
Leverage knowledge graph and GCN for fine-grained-level clickbait detection
2022, World wide web IF:2.7Q2
研究论文 本文提出了一种结合知识图谱、图卷积网络和图注意力网络的细粒度级标题党检测模型 首次尝试将知识图谱和深度学习技术结合用于标题党检测,并实现了可解释性 未提及具体限制 提高标题党检测的准确性和可解释性 标题党检测 自然语言处理 NA 知识图谱,图卷积网络,图注意力网络 GCN 文本 使用真实数据集进行实验
20912 2024-08-30
Deep Learning-Enabled Clinically Applicable CT Planbox for Stroke With High Accuracy and Repeatability
2022, Frontiers in neurology IF:2.7Q3
研究论文 本文介绍了一种基于深度学习的智能CT系统,用于中风患者的临床评估,具有高准确性和重复性 开发了一种名为CAPITAL-CT的智能CT系统,通过使用区域提议网络(RPN)和V-Net模型,实现了对中风患者的高精度自动扫描 NA 开发一种智能CT系统,以提高中风患者随访期间的图像标准性、准确性和重复性 中风患者 计算机视觉 中风 区域提议网络(RPN),V-Net CNN 图像 训练集包含76,382个人脸图像,另一个训练集包含295个受试者,验证集包含1,124名患者
20913 2024-08-30
Head and Neck Cancer Primary Tumor Auto Segmentation Using Model Ensembling of Deep Learning in PET/CT Images
2022, Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...
研究论文 本研究开发了一系列基于3D残差Unet(ResUnet)架构的深度学习模型,用于自动分割PET/CT图像中的口咽癌原发肿瘤,并通过内部和外部验证展示了其高性能 采用标签融合集成方法,包括Simultaneous Truth and Performance Level Estimation(STAPLE)和基于多数投票的体素级阈值方法(AVERAGE),生成共识分割 未来研究应关注通道组合和标签融合策略的最佳组合,以最大化分割性能 提高辐射肿瘤学工作流程中口咽癌原发肿瘤的自动分割 口咽癌原发肿瘤的自动分割 计算机视觉 头颈癌 深度学习 3D Residual Unet(ResUnet) 图像 训练集224名患者,测试集101名患者
20914 2024-08-30
Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma
2022, Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...
研究论文 本研究利用基于DenseNet架构的深度学习框架,结合PET图像、CT图像、原发肿瘤分割掩模和临床数据,预测头颈鳞状细胞癌患者的无进展生存期 本研究首次将肿瘤分割掩模作为额外的输入通道,显著提高了预测模型的C-index值 NA 提高头颈鳞状细胞癌患者的预后预测准确性 头颈鳞状细胞癌患者的无进展生存期 机器学习 头颈鳞状细胞癌 深度学习 DenseNet 图像 大量训练数据来自2021年HECKTOR挑战赛
20915 2024-08-30
Optimizing Graphical Procedures for Multiplicity Control in a Confirmatory Clinical Trial via Deep Learning
2022, Statistics in biopharmaceutical research IF:1.5Q2
研究论文 本文评估了两种现有的无导数约束方法的性能,并提出了一种基于深度学习的优化框架,用于在确认性临床试验中优化图形程序以控制多重性 提出了一种基于前馈神经网络(FNN)的深度学习增强优化框架,该方法在保持某些测试程序特征固定的同时,优化其他特征 NA 优化确认性临床试验中的图形程序,以控制多重性并最大化特定目标函数 确认性临床试验中的多重性控制 机器学习 NA 深度学习 前馈神经网络(FNN) NA NA
20916 2024-08-30
A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19?
2022, PeerJ. Computer science
综述 本文综述了2020年和2021年利用人工智能工具分析咳嗽声音进行COVID-19筛查的最新研究 采用机器学习算法和深度学习模型分析咳嗽声音,以实现COVID-19的筛查 未包括预印本文章,因为它们未经同行评审 探讨人工智能工具在资源有限地区进行COVID-19大规模筛查的应用 咳嗽声音分析 机器学习 COVID-19 机器学习 深度学习模型 声音 NA
20917 2024-08-30
Multiple Traffic Target Tracking with Spatial-Temporal Affinity Network
2022, Computational intelligence and neuroscience
研究论文 本文提出了一种时空编码解码亲和网络用于多交通目标跟踪,旨在利用深度学习的力量学习检测和轨迹的鲁棒时空亲和特征以进行数据关联 该研究提出了一种新的时空编码解码亲和网络,通过两阶段变换器编码模块捕获图像级别和轨迹级别的特征,以及一个空间变换器解码模块计算关联亲和度,从而实现高效的数据关联 NA 利用深度学习技术改进智能交通系统中的多目标跟踪任务 多交通目标的跟踪 计算机视觉 NA 深度学习 变换器(Transformer) 图像 使用了三个流行的多交通目标跟踪数据集:KITTI、UA-DETRAC和VisDrone进行评估
20918 2024-08-30
Interpretable Deep Learning Model Reveals Subsequences of Various Functions for Long Non-Coding RNA Identification
2022, Frontiers in genetics IF:2.8Q2
研究论文 本文介绍了一种名为Xlnc1DCNN的工具,用于通过一维卷积神经网络区分长非编码RNA(lncRNA)和蛋白质编码转录本(PCT),并提供预测解释 Xlnc1DCNN不仅在准确性和F1分数上优于其他现有工具,还提供了预测结果的解释,揭示了lncRNA和PCT的主要识别特征 NA 开发一种能够有效区分lncRNA和PCT的计算工具,并提供预测结果的解释 长非编码RNA(lncRNA)和蛋白质编码转录本(PCT) 机器学习 NA 下一代测序技术 一维卷积神经网络(1DCNN) 序列数据 人类测试集
20919 2024-08-30
PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants
2022, Plant phenomics (Washington, D.C.)
研究论文 本文提出了一种名为PSegNet的深度学习网络,用于植物点云的语义和实例分割 引入了Voxelized Farthest Point Sampling (VFPS)点云下采样策略和三个新模块:Double-Neighborhood Feature Extraction Block (DNFEB)、Double-Granularity Feature Fusion Module (DGFFM)和Attention Module (AM) 未提及 提高植物表型分析中对植物生长监测的自动化水平 植物的叶子和茎的3D点云 计算机视觉 NA 深度学习 PSegNet 点云 涉及三种植物物种的数据集
20920 2024-08-30
Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline
2022, Plant phenomics (Washington, D.C.)
研究论文 开发并验证了一种基于深度学习的自动化微根窗图像分析流程 结合了先进的软件工具,使用深度神经网络和自动特征提取,显著减少了微根窗图像的处理时间 NA 开发一种用于高通量图像分析的客观方法,为田间根系表型分析提供数据 作物根系及其在农业生态系统中的作用 计算机视觉 NA 深度神经网络 神经网络模型 图像 超过36,500张图像
回到顶部