深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32373 篇文献,本页显示第 21001 - 21020 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
21001 2024-11-19
CoVEffect: interactive system for mining the effects of SARS-CoV-2 mutations and variants based on deep learning
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文介绍了一个基于深度学习的交互系统CoVEffect,用于挖掘SARS-CoV-2突变和变异的影响 提出了一个基于GPT2模型的预测系统,能够从COVID-19相关的大数据语料库中提取突变/变异的影响,并通过CoVEffect网络应用程序实现用户交互和数据标注 目前仅使用了CORD-19语料库中的数据进行训练,可能需要扩展到更多数据源以提高模型的泛化能力 旨在填补关于SARS-CoV-2突变和变异影响的文献信息分散的空白,通过挖掘文献摘要提取相关影响 SARS-CoV-2的突变和变异及其在流行病学、免疫学、临床和病毒动力学方面的影响 自然语言处理 NA GPT2模型 GPT2 文本 使用了CORD-19语料库中的大量摘要进行训练 NA NA NA NA
21002 2024-11-19
Deep neural networks with knockoff features identify nonlinear causal relations and estimate effect sizes in complex biological systems
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文介绍了一种名为DAG-deepVASE的新计算方法,通过深度神经网络与knockoff特征结合,用于识别复杂生物系统中的非线性因果关系并估计其效应大小 首次开发了一种能够明确学习非线性因果关系并估计其效应大小的计算方法 NA 开发一种新的计算方法,用于识别复杂生物系统中的非线性因果关系并估计其效应大小 复杂生物系统中的非线性因果关系及其效应大小 机器学习 NA 深度神经网络 深度神经网络 模拟数据和分子及临床数据 涉及多种疾病的数据 NA NA NA NA
21003 2024-11-19
MuLan-Methyl-multiple transformer-based language models for accurate DNA methylation prediction
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文介绍了一种基于多重Transformer语言模型的深度学习框架MuLan-Methyl,用于预测DNA甲基化位点 MuLan-Methyl框架结合了5种流行的Transformer语言模型,通过预训练和微调的方式,能够准确预测三种不同类型的DNA甲基化位点 NA 开发一种能够准确预测DNA甲基化位点的深度学习框架 DNA甲基化位点,包括N6-腺苷、N4-胞嘧啶和5-羟甲基胞嘧啶 机器学习 NA Transformer语言模型 Transformer DNA序列 使用了一个基准数据集进行性能评估 NA NA NA NA
21004 2024-11-19
Computational prediction of human deep intronic variation
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文研究了计算方法在预测人类基因深内含子变异中的应用 本文比较了SpliceAI等深度学习模型与其他新方法的性能,并提出了新的工具可解释性评估方法 工具在预测可能影响剪接调控元件的变异时表现较差 评估不同计算工具在分析深内含子变异中的性能,并提供实用建议 人类基因的深内含子变异 基因组学 NA 深度学习 深度学习模型 基因序列 使用了多种数据集进行评估 NA NA NA NA
21005 2024-11-19
SpheroScan: a user-friendly deep learning tool for spheroid image analysis
2022-12-28, GigaScience IF:11.8Q1
研究论文 开发了一种名为SpheroScan的用户友好型深度学习工具,用于球状体图像分析 SpheroScan利用Mask R-CNN框架进行图像检测和分割,解决了3D球状体分析中缺乏自动化和用户友好工具的问题 NA 开发一种自动化工具,以提高3D球状体分析的重复性和通量 3D球状体图像 计算机视觉 NA 深度学习 Mask R-CNN 图像 使用IncuCyte活细胞分析系统和传统显微镜捕获的球状体图像进行训练 NA NA NA NA
21006 2024-11-19
Accurate and fast clade assignment via deep learning and frequency chaos game representation
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文利用频率混沌游戏表示(FCGR)和卷积神经网络(CNN)开发了一种新的方法,用于SARS-CoV-2基因序列的支系分类 本文首次将深度学习和FCGR应用于物种内分类,并开发了CouGaR-g工具,在GISAID测试子集上实现了96.29%的总体准确率,优于类似工具Covidex NA 开发快速且准确的工具,用于区分不同的SARS-CoV-2变体并将其分配到相应的支系 SARS-CoV-2基因序列及其变体 机器学习 冠状病毒病 频率混沌游戏表示(FCGR) 卷积神经网络(CNN) 基因序列 GISAID平台上的数百万个完整基因序列 NA NA NA NA
21007 2024-11-19
DeePVP: Identification and classification of phage virion proteins using deep learning
2022-08-11, GigaScience IF:11.8Q1
研究论文 本文介绍了一种基于深度学习的噬菌体病毒颗粒蛋白(PVPs)识别与分类工具DeePVP DeePVP在PVP识别任务中的F1分数比现有最先进工具高出9.05%,在PVP分类任务中的整体准确率比PhANNs高出约3.72% NA 开发一种能够有效识别和分类噬菌体病毒颗粒蛋白的工具 噬菌体病毒颗粒蛋白(PVPs) 机器学习 NA 深度学习 NA 序列 NA NA NA NA NA
21008 2024-11-19
Agricultural plant cataloging and establishment of a data framework from UAV-based crop images by computer vision
2022-06-17, GigaScience IF:11.8Q1
研究论文 本文介绍了一种基于计算机视觉方法的自动化时空识别和作物图像个体化工作流程,用于从无人机获取的作物图像中进行作物目录编制 提出了一个自动化工作流程,用于从无人机图像中识别和个体化作物图像,并应用于大规模时空图像数据集的提取和机器学习模型的训练 未提及具体限制 改进农业中无人机数据的分析和解释 作物图像的时空识别和个体化 计算机视觉 NA 计算机视觉方法 机器学习模型 图像 两个真实世界数据集,一个用于观察糖甜菜中的Cercospora叶斑病,另一个用于花椰菜的收获预测 NA NA NA NA
21009 2024-11-19
A novel ground truth multispectral image dataset with weight, anthocyanins, and Brix index measures of grape berries tested for its utility in machine learning pipelines
2022-06-14, GigaScience IF:11.8Q1
研究论文 本文介绍了一个新的葡萄果实多光谱图像数据集,并测试了其在机器学习管道中的实用性 这是首个公开的葡萄果实多光谱图像数据集,每张图像都附有重量、花青素含量和Brix指数的测量数据 NA 验证或反驳研究假设,并进行模型之间的比较 葡萄果实的多光谱图像及其相关测量数据 计算机视觉 NA 多光谱成像 多层感知器(MLP)和三维卷积神经网络(3D-CNN) 图像 1283个多维数组,来自五种不同葡萄品种的果实 NA NA NA NA
21010 2024-11-19
NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
2022-05-17, GigaScience IF:11.8Q1
研究论文 本文介绍了一种可扩展的众包方法和数据集,用于乳腺癌中的细胞核分类和分割 提出了一个协作框架,利用医学生和病理学家的众包力量生成高质量的细胞核标签,并创建了NuCLS数据集 NA 开发一种高效的方法来生成用于计算病理学应用的细胞核标签 乳腺癌中的细胞核 数字病理学 乳腺癌 深度学习 NA 图像 超过220,000个细胞核注释 NA NA NA NA
21011 2024-11-19
Role of artificial intelligence in MS clinical practice
2022, NeuroImage. Clinical
综述 本文讨论了人工智能在多发性硬化症临床实践中的潜在应用及其局限性 机器学习算法能够自动化重复任务,分析更多数据,并在准确性和可重复性方面超越人类 需要更好地理解AI算法选择的信息,进行多中心和纵向验证,并解决硬件和软件集成问题 探讨人工智能在多发性硬化症临床实践中的应用 多发性硬化症的诊断、预后、疾病和治疗监测,以及MRI协议的改进和病变组织的自动分割 机器学习 多发性硬化症 机器学习 (ML) 和深度学习 (DL) NA 影像数据 NA NA NA NA NA
21012 2024-11-18
Decoding lower-limb kinematic parameters during pedaling tasks using deep learning approaches and EEG
2024-Dec, Medical & biological engineering & computing IF:2.6Q3
研究论文 本研究通过比较分析两种基于人工神经网络(ANN)的解码器,评估其在基于脑电图(EEG)的脑机接口(BCI)系统中估计下肢踏车任务中的运动学参数的能力 本研究首次使用深度学习方法(如LSTM)从EEG信号中重建下肢运动学参数,并展示了其在识别踏车和休息期方面的潜力 研究中发现踏车速度与解码器性能之间存在负线性相关,表明在较慢速度下运动学参数更容易估计 评估基于深度学习的解码器在脑机接口系统中估计下肢运动学参数的可行性 下肢踏车任务中的运动学参数,包括踝关节和膝关节在x轴和y轴的位置以及膝关节角度 机器学习 NA 脑电图(EEG) 长短期记忆网络(LSTM) 脑电信号 NA NA NA NA NA
21013 2024-11-18
DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model
2024-Dec, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文提出了一种基于深度神经网络(DNN)和光体积描记(PPG)信号的无袖带血压测量新框架 本文创新性地结合了深度神经网络和集成特征选择技术,显著提高了基于PPG信号的血压估计精度 NA 开发一种基于PPG信号的无袖带连续血压监测算法 PPG信号和血压值 机器学习 心血管疾病 深度神经网络(DNN) DNN 信号 125名受试者的218条记录 NA NA NA NA
21014 2024-11-18
Evaluation of Neonatal Cerebral Circulation Under Hypoxic Ischemic Risk Factors Based on Quantitative Analysis of Cerebral Veins with Magnetic Resonance Susceptibility Weighted Imaging
2024-Dec, Clinical neuroradiology IF:2.4Q2
研究论文 本文通过磁共振磁敏感加权成像(SWI)和图像分割算法,量化分析了新生儿大脑深部髓静脉(DMVs)的数量、宽度和曲率,以评估新生儿在缺氧缺血风险下的脑循环自我调节能力 首次使用图像分割算法量化新生儿大脑深部髓静脉,为评估新生儿脑循环自我调节提供了新的方法 样本量有限,且仅限于特定风险因素下的新生儿 评估新生儿在缺氧缺血风险下的脑循环自我调节能力 新生儿大脑深部髓静脉的数量、宽度和曲率 医学影像 NA 磁共振磁敏感加权成像(SWI) 图像分割算法 图像 317名新生儿 NA NA NA NA
21015 2024-11-18
Hybrid deep learning based prediction for water quality of plain watershed
2024-Dec-01, Environmental research IF:7.7Q1
研究论文 本文评估了传统机器学习模型与深度学习模型在预测平原流域水质方面的效果,并提出了一种新的混合深度学习模型以提高预测准确性 提出了混合Bayes-LSTM-GRU模型,显著提高了预测准确性,平均RMSE降低了18.1% 未提及具体限制 评估不同模型在平原流域水质预测中的效果,并开发新的混合模型以提高预测准确性 平原流域的水质 机器学习 NA NA LSTM, GRU 时间序列数据 未提及具体样本数量 NA NA NA NA
21016 2024-11-18
Conv-RGNN: An efficient Convolutional Residual Graph Neural Network for ECG classification
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种用于心电图分类的高效卷积残差图神经网络(Conv-RGNN) 该方法通过将12导联心电图映射到图结构中,同时提取时间序列和空间特征,解决了传统方法忽略导联间空间关系的问题 NA 提高心血管疾病诊断的自动化水平 12导联心电图信号 机器学习 心血管疾病 卷积神经网络,图神经网络 Conv-RGNN 时间序列数据 涉及两个多标签数据集和一个单标签数据集 NA NA NA NA
21017 2024-11-18
ViT-MAENB7: An innovative breast cancer diagnosis model from 3D mammograms using advanced segmentation and classification process
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种基于3D乳腺X光图像的创新性乳腺癌诊断模型ViT-MAENB7,通过先进的分割和分类过程实现肿瘤的准确检测 本文创新性地结合了Vision Transformer和Multiscale Adaptive EfficientNetB7模型,并使用Modified Garter Snake Optimization Algorithm优化参数,显著提高了乳腺癌诊断的准确性 NA 开发一种高精度的乳腺癌诊断模型,以提高早期乳腺癌检测的准确性和患者的生存率 3D乳腺X光图像中的肿瘤检测 计算机视觉 乳腺癌 Adaptive Thresholding with Region Growing Fusion Model (AT-RGFM), Modified Garter Snake Optimization Algorithm (MGSOA) Vision Transformer-based Multiscale Adaptive EfficientNetB7 (ViT-MAENB7) 图像 从互联网收集的3D乳腺X光图像 NA NA NA NA
21018 2024-11-18
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种基于进化算法的图神经网络架构搜索方法,用于精神分裂谱系障碍的预测 采用进化算法自动搜索高性能的图神经网络架构,并使用GNNExplainer提高模型的可解释性 NA 提高精神分裂谱系障碍的诊断准确性 精神分裂谱系障碍患者的功能磁共振成像数据 机器学习 精神疾病 进化算法 图神经网络 图像 多站点数据集 NA NA NA NA
21019 2024-11-18
Stress-induced overeating behaviors explained from a (transitory) relief-learning perspective
2024-Dec-01, Physiology & behavior IF:2.4Q2
评论 本文提出了一种基于缓解学习的新模型,旨在解释压力诱导的过度饮食行为,并试图将情感饮食理论与激励敏感化理论结合起来 提出了一个新的基于缓解学习的模型,旨在整合情感饮食理论和激励敏感化理论,以更好地理解压力诱导的过度饮食行为 目前缺乏对压力诱导过度饮食行为深层机制的深入理解,且现有理论存在内部理论和方法上的不足 探讨压力诱导的过度饮食行为的深层机制,并提出一个新的整合模型 压力诱导的过度饮食行为及其临床表现 NA 肥胖 NA NA NA NA NA NA NA NA
21020 2024-11-18
ECG classification based on guided attention mechanism
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本研究通过引入两种新的引导注意力机制,提升了心电图异常分类的性能和可解释性 提出了两种新的引导注意力机制,即Guided Spatial Attention (GSA)和CAM-based spatial guided attention mechanism (CGAM),并基于临床知识创建了不同的注意力引导标签 未提及具体限制 提升心电图异常分类的性能和可解释性 心电图异常分类任务,包括ST段改变检测、早搏识别、Wolf-Parkinson-White综合征分类和房颤检测 机器学习 心血管疾病 引导注意力机制 NA 心电图 未提及具体样本数量 NA NA NA NA
回到顶部