深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24513 篇文献,本页显示第 21061 - 21080 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21061 2024-08-07
A simple and robust method for automating analysis of naïve and regenerating peripheral nerves
2021, PloS one IF:2.9Q1
研究论文 本文评估了开源深度学习程序AxonDeepSeg在不同制备方法的外周神经光镜图像中进行轴突组织形态测量的鲁棒性 AxonDeepSeg无需重新训练算法,能够适当地识别幼稚和再生神经之间的关键差异,并适用于不同的外周神经光镜图像制备方法 手动和自动AxonDeepSeg轴突计数在再生神经上显示出中等的一致性,且在轴突直径、髓鞘厚度和g比率测量上存在小但一致的差异 评估AxonDeepSeg在外周神经轴突组织形态测量中的鲁棒性 幼稚和再生的大鼠正中神经横截面的光镜图像 计算机视觉 NA 深度学习 CNN 图像 幼稚和再生的大鼠正中神经横截面
21062 2024-08-07
The predictive skill of convolutional neural networks models for disease forecasting
2021, PloS one IF:2.9Q1
研究论文 本文研究了一维卷积神经网络(CNN)模型在流行病学预测中的应用 本文采用一维时间卷积层作为主要构建块的两种神经网络——时间卷积网络和简单神经注意元学习器,用于流行病学预测,并发现其预测技能与普通RNN相当,有时甚至更优 NA 研究CNN模型在流行病学预测中的有效性 一维卷积神经网络模型在流行病学预测中的应用 机器学习 NA 卷积神经网络(CNN) CNN 数据 2010-2019年美国流感数据
21063 2024-08-07
Efficient, high-performance semantic segmentation using multi-scale feature extraction
2021, PloS one IF:2.9Q1
研究论文 本文介绍了一种名为MoNet的高效神经网络分割算法,利用多尺度图像特征进行优化 MoNet算法在保持与比较架构相匹配的分割性能的同时,提供了更好的样本外泛化性能,并且在独立验证集上优于更大的架构 NA 开发适用于资源受限环境的高效深度学习架构,并评估其在联邦学习应用中的适用性 胰腺分割和脑肿瘤分割 计算机视觉 NA 多尺度特征提取 U-Net类似架构 图像 NA
21064 2024-08-07
Forecasting renewable energy for environmental resilience through computational intelligence
2021, PloS one IF:2.9Q1
研究论文 本文利用海上风力发电机产生的数据,通过深度自动编码器筛选高维特征,并结合CNN和LSTM模型进行风能预测,以提高环境韧性。 提出了一种结合CNN和LSTM的深度学习混合模型,用于提高海上风能预测的准确性。 NA 提高海上风能预测的准确性,从而增强环境韧性。 海上风力发电机的风能预测。 机器学习 NA 深度学习 CNN-LSTM 数据 三个不同的海上风电场
21065 2024-08-07
Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records
2021, PloS one IF:2.9Q1
研究论文 本文利用时间序列深度学习模型预测电子健康记录中的心脏节律失常 采用长短期记忆(LSTM)模型进行预测,该模型在预测性能上优于传统的机器学习模型 未提及具体限制 利用电子健康记录数据预测心脏节律失常,以实现早期诊断和治疗 心脏节律失常的预测 机器学习 心血管疾病 长短期记忆(LSTM)模型 LSTM 电子健康记录数据 70个诊所的电子健康记录数据
21066 2024-08-07
Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet
2021, PloS one IF:2.9Q1
研究论文 本文利用RetinaNet模型在MADM小鼠脑组织切片中自动检测和分类神经元及胶质细胞 引入第二个RetinaNet模型专门用于检测胶质细胞簇,显著提高了胶质细胞簇的自动计数精度 单一RetinaNet模型在处理密集和饱和的胶质细胞簇时存在困难 开发一种自动检测和分类组织切片中细胞群的方法 MADM小鼠脑中的神经元和胶质细胞 计算机视觉 NA NA RetinaNet 图像 涉及六类通过MADM报告基因表达和表型(神经元或胶质)区分的细胞
21067 2024-08-07
3D fluorescence microscopy data synthesis for segmentation and benchmarking
2021, PloS one IF:2.9Q1
研究论文 本文提出了一种利用条件生成对抗网络从3D细胞结构注释掩码生成真实3D荧光显微镜图像数据的方法 本文创新地使用条件生成对抗网络生成3D荧光显微镜图像数据,并结合掩码模拟方法生成完全注释的3D显微镜数据集,公开可用 NA 旨在解决深度学习方法在生物医学图像处理中缺乏大量注释训练数据的问题 3D荧光显微镜图像数据 计算机视觉 NA 条件生成对抗网络 GAN 图像 任意大小和不同生物体的图像数据
21068 2024-08-07
Identification of public submitted tick images: A neural network approach
2021, PloS one IF:2.9Q1
研究论文 本文介绍了一种基于卷积神经网络的自动识别蜱虫图像的方法TickIDNet,并展示了其在蜱虫识别上的应用 TickIDNet在蜱虫识别上达到了87.8%的准确率,超过了普通公众和医疗专业人员的识别能力 该模型未能达到具有正式昆虫学训练的专家的性能,且在小物体检测方面存在挑战 开发一种能够实时准确识别蜱虫图像的系统,以帮助公众了解蜱虫风险并提供研究人员和公共卫生机构更多关于蜱虫活动的数据 蜱虫及其传播的疾病 计算机视觉 NA 卷积神经网络 CNN 图像 超过90,000张蜱虫图像
21069 2024-08-07
Accurate identification of breast cancer margins in microenvironments of ex-vivo basal and luminal breast cancer tissues using Raman spectroscopy
2020-Dec, Prostaglandins & other lipid mediators IF:2.5Q3
研究论文 本研究使用拉曼光谱技术对离体基底和腔内乳腺癌组织的微环境进行精确识别,并开发了一种卷积神经网络(CNN)深度学习算法来区分组织切片中的组织病理学特征。 本研究利用拉曼光谱技术提供了快速、无标记的微观特征成像,并开发了一种深度学习算法来提高识别准确性。 NA 研究目的是更好地理解乳腺癌肿瘤微环境,以辅助手术切除和肿瘤发展过程的理解。 研究对象包括88个冷冻的乳腺组织切片,其中44个为正常组织,44个为肿瘤组织。 数字病理学 乳腺癌 拉曼光谱 CNN 图像 88个冷冻乳腺组织切片
21070 2024-08-07
Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information
2020-Nov-08, Biomolecules IF:4.8Q1
研究论文 本文提出了一种名为Cropping-Segmentation-Calibration(CSC)的新型分割方法,专门用于胎儿心脏超声视频中的室间隔图像分割 CSC方法利用视频的时间序列信息和特定部分信息校准U-net的输出,显著提高了分割性能 NA 开发一种新的图像分割方法,以精确检测胎儿心脏超声视频中的室间隔 胎儿心脏超声视频中的室间隔 计算机视觉 NA 深度学习 U-net 视频 615帧来自421个正常胎儿心脏超声视频,涉及211名孕妇
21071 2024-08-07
Latent space manipulation for high-resolution medical image synthesis via the StyleGAN
2020-Nov, Zeitschrift fur medizinische Physik IF:2.4Q2
研究论文 本文探讨了StyleGAN模型作为高分辨率合成医学图像生成器的潜力 利用StyleGAN的样式转换功能在不同模态间移动图像,并通过操纵潜在样式向量来转换图像特征 NA 研究StyleGAN模型在生成合成医学图像方面的应用 盆腔恶性肿瘤患者的CT和T2加权MR图像 计算机视觉 NA StyleGAN StyleGAN 图像 100名盆腔恶性肿瘤患者
21072 2024-08-07
Efficient prediction of drug-drug interaction using deep learning models
2020-Aug, IET systems biology IF:1.9Q3
研究论文 本文提出并实现了一种集成的卷积混合密度循环神经网络模型,用于高效预测药物-药物相互作用 提出的模型结合了卷积神经网络、循环神经网络和混合密度网络,通过广泛的比较分析显示出显著优于竞争模型的性能 目前文章未提及具体限制 旨在提高药物-药物相互作用预测的效率和准确性 药物-药物相互作用 机器学习 NA 卷积神经网络、循环神经网络、混合密度网络 卷积混合密度循环神经网络 NA NA
21073 2024-08-07
Scale and translation-invariance for novel objects in human vision
2020-Jan-29, Scientific reports IF:3.8Q1
研究论文 本研究通过测量非韩语使用者在一次闪现学习中对韩文字母的识别准确率,探讨了人类视觉对新物体识别的尺度不变性和位置不变性 研究发现人类在单次暴露于新物体后具有显著的尺度不变性,并提出了神经网络模型应内置尺度不变性以解释人类对物体的恒定识别 位置不变性的范围有限,取决于呈现物体的大小和位置 探究人类视觉对新物体识别的尺度不变性和位置不变性 人类视觉对新物体识别的不变性 计算机视觉 NA NA 神经网络模型 图像 非韩语使用者
21074 2024-08-07
Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy
2019-01, Eye (London, England)
综述 本文综述了基于眼底照片的深度学习算法在糖尿病视网膜病变(DR)检测中的应用 深度神经网络在从视网膜图像中筛查DR方面提供了巨大的优势,提高了对DR病变和疾病风险因素的识别准确性和可靠性 NA 比较当前各种深度学习模型在糖尿病视网膜病变(DR)诊断中的证据 糖尿病视网膜病变(DR)的诊断 机器学习 糖尿病 卷积神经网络(深度学习方法) CNN 图像 NA
21075 2024-08-07
The Role of a Deep-Learning Method for Negation Detection in Patient Cohort Identification from Electroencephalography Reports
2018, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:30815145
研究论文 本文研究了一种深度学习方法在从脑电图报告中识别患者队列时进行否定检测的作用 本文采用了一种神经否定检测技术,并与现有的神经极性识别系统进行了比较,结果表明该方法能产生更好的患者队列 NA 研究如何通过深度学习技术提高患者队列识别的准确性 脑电图报告中的否定检测 自然语言处理 NA 深度学习 神经网络 文本 NA
21076 2024-08-07
Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease
2018, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:30815157
研究论文 本文提出了一种基于图卷积网络的深度学习方法,用于融合多种脑图像模态,以预测帕金森病的关系 使用图卷积网络融合多种脑图像模态,提高了帕金森病与对照组的区分效果 未提及具体限制 开发一种新的深度学习方法,用于提高帕金森病的诊断准确性 帕金森病的脑图像分析 机器学习 帕金森病 图卷积网络 (GCN) 图卷积网络 脑图像 使用帕金森病进展标志物倡议 (PPMI) 队列
21077 2024-08-05
AI-assisted deep learning segmentation and quantitative analysis of X-ray microtomography data from biomass ashes
2024-Dec, MethodsX IF:1.6Q2
研究论文 这篇文章介绍了一种使用深度学习对X射线微核成像数据进行分割和定量分析的方法 提出了一种深度学习分割方法,克服了手动分割中遇到的挑战,并提高了对多样化颗粒的定量分析精度 对于具有相似强度但不同模式的材料特征及背景中的强度变化和伪影,可能仍然存在分离困难 提高生物质灰烬图像的分割和定量分析效率,以促进有效的营养回收与可持续实践 生物质灰烬的微观结构,特别是颗粒的物理特性和孔隙结构 计算机视觉 NA 深度学习 U-Net 图像 NA
21078 2024-08-05
Image-based deep learning model using DNA methylation data predicts the origin of cancer of unknown primary
2024-09, Neoplasia (New York, N.Y.)
研究论文 本文开发了一种基于图像的深度学习模型,用于预测未知原发癌症的起源。 文章创新地应用了视觉变换算法和DNA甲基化数据来识别癌症的起源。 本研究的局限性在于使用的样本主要来自TCGA和20个外部研究,可能影响模型的普遍适用性。 研究的目的是提高对未知原发癌症起源的准确识别。 研究对象为8,233个来自TCGA的原发肿瘤样本和394个转移癌样本。 数字病理学 未知原发癌症 DNA甲基化分析 视觉变换器 图像 8,233个原发肿瘤样本和394个转移癌样本
21079 2024-08-05
An instance segmentation dataset of cabbages over the whole growing season for UAV imagery
2024-Aug, Data in brief IF:1.0Q3
研究论文 本文介绍了一种针对整个生长季节的白菜实例分割数据集,适用于无人机图像 提供了标注的白菜图像数据集,以便通过深度学习模型进行白菜识别 目前白菜的训练数据集仍然有限 创建用于无人机影像的白菜识别训练数据集 白菜图像和其标注 机器学习 NA 深度学习 NA 图像 458张图像,17,621个标注的白菜
21080 2024-08-05
Diagnostic support in pediatric craniopharyngioma using deep learning
2024-Aug, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
研究论文 本文研究了儿童颅咽管瘤患者,旨在开发用于放射学辅助分类的卷积深度学习算法 首次在本机构开展此类研究,利用可解释的人工智能和深度学习模型实现放射学诊断支持 NA 开发深度学习算法用于儿童颅咽管瘤的诊断支持 226名智利儿童患者的磁共振影像 计算机视觉 颅咽管瘤 深度学习 卷积神经网络 图像 226名患者(68名健康对照,58名颅咽管瘤患者,100名其他颅内肿瘤患者)
回到顶部