本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21301 | 2024-08-30 |
Examining embedded apparatuses of AI in Facebook and TikTok
2021-Sep-12, AI & society
IF:2.9Q2
DOI:10.1007/s00146-021-01270-5
PMID:34539095
|
研究论文 | 本文通过分析Facebook和TikTok的透明度倡议和官方声明,探讨了AI在这些社交平台中的嵌入方式及其功能,特别是AI内容审核作为解决问题材料和错误信息传播的解决方案。 | 文章创新地分析了AI作为物质-话语机制的复杂性,强调了其在特定时间段内可见、可说、可知的论述技巧以及算法、数据集、用户、平台、基础设施、审核员等物质安排。 | 文章主要依赖于Facebook和TikTok的透明度倡议和官方声明,可能未能全面揭示AI在这些平台中运作的所有细节。 | 研究目的是探讨AI在社交平台中的嵌入方式及其对内容推荐、广告个性化、新闻聚合和问题材料审核的影响。 | 研究对象包括Facebook和TikTok这两个社交平台中的AI嵌入机制。 | 自然语言处理 | NA | 机器学习 (ML), 深度学习 (DL) | NA | 文本 | NA |
21302 | 2024-08-30 |
Machine learning for medical imaging-based COVID-19 detection and diagnosis
2021-Sep, International journal of intelligent systems
IF:5.0Q1
DOI:10.1002/int.22504
PMID:38607786
|
综述 | 本文综述了机器学习在基于医学影像的COVID-19检测与诊断中的最新进展,特别关注使用CT和X射线图像的机器学习模型 | 利用深度学习算法,特别是卷积神经网络,进行图像分割和分类,以识别COVID-19患者 | 许多机器学习模块在样本量有限的数据集上取得了显著的预测结果 | 探讨机器学习在COVID-19检测与诊断中的应用,以控制疫情传播和降低死亡率 | COVID-19的检测与诊断 | 机器学习 | COVID-19 | NA | 卷积神经网络 | 图像 | 有限样本量 |
21303 | 2024-08-30 |
CondenseNet with exclusive lasso regularization
2021, Neural computing & applications
IF:4.5Q2
DOI:10.1007/s00521-021-06222-0
PMID:34219978
|
研究论文 | 本文开发了CondenseNet-elasso,通过应用exclusive lasso正则化来消除不同卷积组之间的特征相关性,从而缓解神经网络的过拟合问题 | 引入exclusive lasso正则化,鼓励不同卷积组使用不同的输入通道子集,学习更多样化的特征 | NA | 提高计算效率并缓解神经网络的过拟合问题 | CondenseNet-elasso模型及其在图像分类任务中的性能 | 机器学习 | NA | group convolution | CNN | image | CIFAR10, CIFAR100和Tiny ImageNet数据集 |
21304 | 2024-08-30 |
Deep neural networks for COVID-19 detection and diagnosis using images and acoustic-based techniques: a recent review
2021, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-021-06137-x
PMID:34456618
|
综述 | 本文综述了使用图像和声学技术基于深度学习算法进行COVID-19检测和诊断的方法 | 讨论了不同方法的优势和劣势,并介绍了基于深度学习的COVID-19检测的数据库和主要未来挑战 | 未具体提及 | 探讨基于深度学习的COVID-19早期诊断和检测方法,以加快治疗过程并防止病毒传播 | COVID-19的早期检测和诊断 | 计算机视觉 | COVID-19 | 深度学习算法 | 深度神经网络 | 图像 | 未具体提及 |
21305 | 2024-08-30 |
Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks
2021, Applied intelligence (Dordrecht, Netherlands)
DOI:10.1007/s10489-020-01900-3
PMID:34764554
|
研究论文 | 本文提出了一种使用后前位胸X光图像和微调深度神经网络来自动诊断COVID-19的方法 | 采用随机过采样和加权类别损失函数方法,以实现无偏微调学习,并应用于多种先进的深度学习模型 | 研究使用的数据集样本有限,主要关注COVID-19阳性病例 | 开发一种更稳健和替代的COVID-19诊断技术 | COVID-19的自动诊断和肺部感染的识别 | 机器学习 | 呼吸系统疾病 | 深度学习 | NASNetLarge, ResNet, Inception-v3, Inception ResNet-v2, DenseNet169 | 图像 | 公开数据集中包含的COVID-19阳性患者的后前位胸X光图像有限 |
21306 | 2024-08-30 |
A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images
2020-Dec, European radiology
IF:4.7Q1
DOI:10.1007/s00330-020-07044-9
PMID:32617690
|
研究论文 | 利用深度学习模型自动检测COVID-19患者的胸部CT图像中的异常,并与放射科住院医师的定量判断性能进行比较 | 深度学习模型在检测COVID-19肺炎方面表现出比放射科住院医师更高的敏感性和诊断效率 | NA | 开发和验证一种深度学习算法,用于自动检测COVID-19患者的胸部CT图像中的肺炎病变 | COVID-19患者的胸部CT图像 | 计算机视觉 | COVID-19 | 深度学习 | 深度学习算法 | 图像 | 14,435名参与者的胸部CT图像用于训练和验证,96名确诊COVID-19患者的非重叠数据集用于测试 |
21307 | 2024-08-29 |
A transformer-based unified multimodal framework for Alzheimer's disease assessment
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108979
PMID:39098237
|
研究论文 | 提出了一种基于transformer的统一多模态框架AD-Transformer,用于阿尔茨海默病评估 | AD-Transformer通过整合结构磁共振成像、临床和遗传数据,创新性地使用transformer块学习输入数据的综合表示,捕捉各模态间的复杂交互 | NA | 提高阿尔茨海默病诊断和轻度认知障碍转换预测的准确性 | 阿尔茨海默病患者和轻度认知障碍患者 | 机器学习 | 阿尔茨海默病 | NA | Transformer | 图像和非图像数据 | 1651名受试者 |
21308 | 2024-08-29 |
Action tremor features discovery for essential tremor and Parkinson's disease with explainable multilayer BiLSTM
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108957
PMID:39098236
|
研究论文 | 本文通过引入具有可解释性的人工智能(XAI)的多层双向长短期记忆网络(BiLSTM),旨在更好地解释震颤特征并量化震颤区分中的重要区域,以区分帕金森病(PD)和原发性震颤(ET)。 | 本文提出的XAI-BiLSTM模型能够揭示PD和ET震颤的独特时间模式和频率范围,有助于减少误诊率并提高治疗效果。 | NA | 克服深度学习模型在临床应用中的不透明性,提高震颤分类的准确性。 | 帕金森病(PD)、原发性震颤(ET)及正常震颤的分类。 | 机器学习 | 神经退行性疾病 | 多层双向长短期记忆网络(BiLSTM) | BiLSTM | 时间序列数据 | NA |
21309 | 2024-08-29 |
Visceral Adiposity and Progression of ADPKD: A Cohort Study of Patients From the TEMPO 3:4 Trial
2024-Sep, American journal of kidney diseases : the official journal of the National Kidney Foundation
IF:9.4Q1
DOI:10.1053/j.ajkd.2024.02.014
PMID:38608748
|
研究论文 | 本研究通过回顾性队列研究探讨了内脏脂肪与常染色体显性多囊肾病(ADPKD)进展之间的关系,并评估了托伐普坦的疗效受内脏脂肪影响的情况。 | 使用深度学习从磁共振成像(MRI)中提取内脏脂肪数据,并分析其与ADPKD患者肾脏体积年变化率的关系,以及对托伐普坦疗效的影响。 | 回顾性研究;快速进展者;深度学习的计算需求。 | 探讨内脏脂肪与ADPKD患者肾脏疾病进展的关系及对托伐普坦疗效的影响。 | ADPKD患者及托伐普坦治疗效果。 | NA | 多囊肾病 | 磁共振成像(MRI),深度学习 | 深度学习分割模型 | 图像 | 1053名ADPKD患者 |
21310 | 2024-08-29 |
Brain-GCN-Net: Graph-Convolutional Neural Network for brain tumor identification
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108971
PMID:39106672
|
研究论文 | 本文提出了一种结合图神经网络和卷积神经网络的深度学习模型,用于提高脑肿瘤检测的准确性 | 该模型通过整合图神经网络和卷积神经网络,能够更全面地表示脑肿瘤图像并提高分类性能 | NA | 提高脑肿瘤检测和分类的准确性 | 脑肿瘤 | 计算机视觉 | 脑肿瘤 | 深度学习 | 图卷积神经网络 | 图像 | 10847张MRI图像 |
21311 | 2024-08-29 |
Contrastive learning based method for X-ray and CT registration under surgical equipment occlusion
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108946
PMID:39106676
|
研究论文 | 本文设计了一种基于对比学习的X射线和CT图像配准方法,以解决手术设备遮挡问题 | 提出了一种对比学习方法,将遮挡和未遮挡的X射线视为正样本,增强模型对遮挡的鲁棒性 | 未提及具体限制 | 提高手术导航中3D/2D图像配准的准确性,特别是在存在手术设备遮挡的情况下 | X射线和CT图像的配准 | 计算机视觉 | NA | 对比学习 | Transformer | 图像 | 包含不同手术设备的遮挡X射线 |
21312 | 2024-08-29 |
Discovery of potential antidiabetic peptides using deep learning
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109013
PMID:39137670
|
研究论文 | 本研究利用先进的深度学习技术探索发现和预测具有抗糖尿病活性的肽(ADPs)的方法 | 开发了两种模型:单通道CNN和三通道神经网络(CNN + RNN + Bi-LSTM),并在独立测试集上实现了90.48%的预测准确率,超过了现有的ADP预测工具 | NA | 解决发现和预测具有抗糖尿病活性的肽(ADPs)的挑战 | 具有抗糖尿病活性的肽(ADPs) | 机器学习 | 糖尿病 | 深度学习 | CNN, RNN, Bi-LSTM | 肽序列数据 | 主要从BioDADPep数据库收集ADPs,以及从抗肿瘤、抗菌和抗病毒肽数据集中收集数千个非ADPs |
21313 | 2024-08-29 |
Advancing breast ultrasound diagnostics through hybrid deep learning models
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108962
PMID:39142222
|
研究论文 | 本文介绍了一种名为EfficientKNN的新型混合深度学习模型,该模型结合了EfficientNetB3的先进特征提取能力和k-最近邻(k-NN)算法的简单有效性,用于乳腺超声诊断 | EfficientKNN模型通过结合EfficientNetB3和k-NN算法,实现了在医疗图像分类中的高准确率和临床适用性 | NA | 提高乳腺超声诊断的准确性 | 乳腺超声图像的分类 | 计算机视觉 | 乳腺癌 | 深度学习 | 混合模型 | 图像 | 包含良性、恶性和正常医疗图像的精选数据集 |
21314 | 2024-08-29 |
Improved Dementia Prediction in Cerebral Small Vessel Disease Using Deep Learning-Derived Diffusion Scalar Maps From T1
2024-Sep, Stroke
IF:7.8Q1
DOI:10.1161/STROKEAHA.124.047449
PMID:39145386
|
research paper | 本文开发了一种深度学习模型,用于从T1图像合成FA/MD图,以提高小血管疾病中痴呆预测的准确性 | 提出了一种快速且可泛化的方法,从T1图像合成FA/MD图,以在没有扩散张量成像数据的情况下提高小血管疾病中痴呆预测的准确性 | NA | 开发一种方法,从T1图像合成FA/MD图,以提高小血管疾病中痴呆预测的准确性 | 小血管疾病中的痴呆预测 | machine learning | vascular dementia | diffusion tensor imaging | deep learning | image | 训练数据集包含4998名参与者,四个外部验证数据集包含753名小血管疾病患者和1000名正常对照 |
21315 | 2024-08-29 |
Semantic segmentation in skin surface microscopic images with artifacts removal
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108975
PMID:39153395
|
研究论文 | 本文研究了在皮肤表面显微图像中使用深度学习模型进行语义分割,并提出了一种新的暗角检测和去除方法来提高分割性能 | 引入了暗角检测和去除方法,这是一种新的皮肤病变分割方法 | NA | 提高深度学习模型在皮肤病变分割中的性能 | 皮肤表面显微图像中的常见伪影,如头发和暗角 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 使用了PH2、ISIC 2017和ISIC 2018数据集 |
21316 | 2024-08-29 |
A cross-temporal multimodal fusion system based on deep learning for orthodontic monitoring
2024-Sep, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109025
PMID:39159544
|
研究论文 | 本文开发了一种基于深度学习的跨时间多模态融合系统,用于正畸治疗中的风险监测,无需额外辐射 | 本文首次开发了基于深度学习的跨时间多模态融合系统,用于正畸治疗中的连续风险监测,无需额外辐射 | NA | 开发一种基于深度学习的跨时间多模态图像融合系统,用于获取牙齿和颌骨信息,增强正畸医生监测风险的能力 | 牙齿和颌骨的三维关系 | 计算机视觉 | NA | CBCT 和口腔内扫描 (IOS) | 深度学习模型 | 图像 | NA |
21317 | 2024-08-29 |
Osteoporotic vertebral compression fracture (OVCF) detection using artificial neural networks model based on the AO spine-DGOU osteoporotic fracture classification system
2024-Sep, North American Spine Society journal
DOI:10.1016/j.xnsj.2024.100515
PMID:39188670
|
研究论文 | 本文评估了基于AO脊柱-DGOU骨质疏松性骨折分类系统的人工神经网络模型在骨质疏松性椎体压缩骨折(OVCF)检测中的潜力。 | 利用深度学习的人工神经网络模型快速自动识别和可视化OVCF。 | NA | 评估人工神经网络在OVCF检测中的潜力。 | 骨质疏松性椎体压缩骨折(OVCF)的检测、分类和分级。 | 机器学习 | 骨质疏松症 | 深度学习 | ANN | CT图像 | 训练数据集包含934张CT图像,测试数据集包含116张CT图像。 |
21318 | 2024-08-29 |
The prognostic value of visual and automatic coronary calcium scoring from low-dose computed tomography-[15O]-water positron emission tomography
2024-Aug-26, European heart journal. Cardiovascular Imaging
DOI:10.1093/ehjci/jeae081
PMID:38525588
|
研究论文 | 本研究旨在验证通过低剂量计算机断层扫描(LDCT)自动和视觉评分冠状动脉钙化(CAC)的准确性,并评估在[15O]-水正电子发射断层扫描(PET)心肌灌注成像(MPI)期间获取的LDCT扫描对主要不良心脏事件(MACE)预测的附加价值 | 本研究首次评估了在[15O]-水PET MPI期间获取的LDCT扫描对CAC评分的附加价值,并使用深度学习方法进行自动评分 | 风险组分类的一致性仅为中等,且样本量相对较小 | 验证LDCT扫描中CAC评分的准确性并评估其对MACE预测的附加价值 | 572名疑似冠状动脉疾病患者 | 数字病理学 | 心血管疾病 | 低剂量计算机断层扫描(LDCT) | 深度学习 | 图像 | 572名患者 |
21319 | 2024-08-29 |
Preliminary Evaluation of Fine-Tuning the OpenDeLD Deidentification Pipeline Across Multi-Center Corpora
2024-Aug-22, Studies in health technology and informatics
DOI:10.3233/SHTI240515
PMID:39176896
|
研究论文 | 本研究评估了OpenDeID去标识化管道在多中心语料库中的微调效果,以提高电子健康记录(EHR)二次使用中的患者隐私保护 | 采用混合去标识化策略,结合深度学习和上下文规则,提高了EHR数据中敏感信息的保护能力 | NA | 评估和增强电子健康记录二次使用中的患者隐私保护 | OpenDeID去标识化管道在不同语料库中的性能 | 自然语言处理 | NA | 深度学习 | BioBERT | 文本 | 4,038份报告 |
21320 | 2024-08-29 |
Deep learning assisted segmentation of the lumbar intervertebral disc: a systematic review and meta-analysis
2024-Aug-21, Journal of orthopaedic surgery and research
IF:2.8Q1
DOI:10.1186/s13018-024-05002-5
PMID:39169382
|
meta-analysis | 本研究旨在评估深度学习技术在磁共振图像中腰椎间盘分割的性能并探索改进策略 | 本研究通过系统评价和荟萃分析方法,综合评估了深度学习模型在腰椎间盘分割中的表现 | 由于纳入研究在算法框架和结果报告上的异质性,结论应谨慎解释 | 评估深度学习技术在腰椎间盘分割中的性能并探索改进策略 | 腰椎间盘分割 | machine learning | NA | deep learning | NA | image | 45项研究被纳入系统评价,其中16项提供了完整的分割性能数据 |