深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24356 篇文献,本页显示第 21481 - 21500 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21481 2024-08-05
Radiomics incorporating deep features for predicting Parkinson's disease in 123I-Ioflupane SPECT
2024-Jul-10, EJNMMI physics IF:3.0Q2
研究论文 本研究结合放射组学和深度学习特征,以预测帕金森病的Hoehn-Yahr阶段 结合放射组学和深度学习特征的模型相比于单独使用放射组学或深度学习,显著提升了帕金森病预测的准确性 MRI与SPECT基础的分割方法在放射组学结果上未表现出显著差异,限制了模型的广泛适用性 研究基于123I-Ioflupane SPECT影像预测帕金森病的Hoehn-Yahr阶段 161名帕金森病患者,评估首次诊断后的第0年和第4年 计算机视觉 帕金森病 123I-Ioflupane SPECT 2D DenseNet 影像 161名受试者
21482 2024-08-05
Deep learning-based recommendation system for metal-organic frameworks (MOFs)
2024-Jul-10, Digital discovery IF:6.2Q1
研究论文 本文提出了一种基于深度学习的金属有机框架(MOFs)推荐系统 该系统利用无监督的Doc2Vec模型,将MOFs嵌入高维化学空间,进行相似性分析以推荐特定应用的材料 该方法可能在推荐的材料范围上具有局限性,仍需要对一些材料进行深度调查 研究旨在开发一种高效的MOFs推荐系统 研究对象为金属有机框架(MOFs) 机器学习 NA Doc2Vec NA 文档结构的MOF特性 NA
21483 2024-08-07
Author Correction: A fully automated classification of third molar development stages using deep learning
2024-Jul-10, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
21484 2024-08-05
Application of Artificial Intelligence in rehabilitation science: A scientometric investigation Utilizing Citespace
2024-Jul-04, SLAS technology IF:2.5Q3
研究论文 本研究展示了康复科学与人工智能(AI)技术交叉的科学计量分析 研究通过Citespace工具可视化和量化AI在康复科学中的应用,揭示了该领域的研究趋势和影响 尽管分析提供了有价值的见解,但数据仅来源于Web of Science数据库,可能存在选择偏差 探索人工智能在康复科学中的应用及其发展趋势 基于2002年至2022年间与康复科学及人工智能相关的出版物进行分析 数字病理学 NA 科学生物信息学 NA 文献数据 分析涉及2002至2022年间的多篇学术论文
21485 2024-08-05
DenseNet model incorporating hybrid attention mechanisms and clinical features for pancreatic cystic tumor classification
2024-Jul, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究旨在开发一种深度学习模型,以区分胰腺浆液囊肿肿瘤和粘液囊肿肿瘤 提出了一种结合混合注意力机制和临床特征的DenseNet模型,以提高分类精度 本研究的数据集可能存在样本量限制,影响模型的广泛适用性 探讨如何利用临床特征和影像结果提高胰腺囊肿肿瘤的分类准确度 207例浆液囊肿肿瘤患者和93例粘液囊肿肿瘤患者的影像数据 计算机视觉 胰腺癌 深度学习 DenseNet-161 图像 207例SCN和93例MCN,共1761幅图像
21486 2024-08-05
Predicting glycan structure from tandem mass spectrometry via deep learning
2024-Jul, Nature methods IF:36.1Q1
研究论文 本研究介绍了CandyCrunch,一种通过深度学习从质谱数据预测糖基结构的工具 该文献创新性地提出了一种深度学习模型,能在几秒钟内预测糖基结构,并达到90.3%的准确率 暂无讨论具体的局限性信息 研究旨在解决糖基结构注释中的瓶颈,以促进高通量糖组学 研究对象为糖类及其结构的预测 数字病理学 NA 液相色谱-质谱联用 (LC-MS/MS) 扩张残差神经网络 质谱数据 500,000个注释的MS/MS光谱
21487 2024-08-05
Automatic segmentation of dura for quantitative analysis of lumbar stenosis: A deep learning study with 518 CT myelograms
2024-Jul, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究开发了一种自动分割脊髓硬膜的工具,用于对腰椎狭窄进行定量分析 创新之处在于利用深度学习算法实现了CTM图像中脊髓硬膜的自动轮廓描绘工具 研究样本仅限于腹股沟CTM影像,可能影响结果的通用性 本研究旨在开发一种用于腰椎狭窄患者CTM影像定量分析的自动硬膜轮廓工具 研究对象为518例CTM影像,包括有腰椎狭窄和没有腰椎狭窄的病例 数字病理学 腰椎狭窄 深度学习 3D U-Net 影像 518例CTM影像
21488 2024-08-05
A deep learning-based 3D Prompt-nnUnet model for automatic segmentation in brachytherapy of postoperative endometrial carcinoma
2024-Jul, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究创建并评估了一种基于深度学习的3D Prompt-nnUnet模块,用于术后子宫内膜癌患者高剂量率近距离放疗中的自动分割。 引入了一种新的基于提示的模型,结合3D nnUnet进行高风险临床靶区和风险器官的快速一致的自动分割。 研究的样本量限制在特定的患者群体,可能影响结果的广泛适用性。 评估新模型在术后子宫内膜癌患者高剂量率近距离放疗中自动分割的有效性。 321名子宫内膜癌患者的CT扫描用于高风险临床靶区分割;125名患者的CT扫描用于风险器官分割。 数字病理学 子宫内膜癌 CT扫描 3D Prompt-nnUnet 图像 321个CT扫描用于HR CTV分割,125个CT扫描用于OAR分割
21489 2024-08-05
Predicting response to neoadjuvant chemotherapy for colorectal liver metastasis using deep learning on prechemotherapy cross-sectional imaging
2024-Jul, Journal of surgical oncology IF:2.0Q2
研究论文 本研究使用深度学习模型预测结直肠肝转移患者对新辅助化疗的反应 采用基于图像的深度学习模型,其预测效果优于临床模型 研究主要集中在特定患者群体,可能无法广泛推广 预测结直肠肝转移患者对新辅助化疗的反应 成年结直肠肝转移患者 机器学习 结直肠癌 计算机断层扫描(CT) 深度学习模型(DLM) 图像 95名患者,33,619幅图像
21490 2024-08-05
Data-driven regularization lowers the size barrier of cryo-EM structure determination
2024-Jul, Nature methods IF:36.1Q1
研究论文 本研究探讨了如何通过深度学习改善图像对齐,以克服电子冷冻显微镜的结构确定中的粒子大小限制 提出了一种称为Blush正则化的新方法,通过去噪卷积神经网络提高了蛋白质-核酸复合物的重建质量 研究可能受限于深度学习模型的训练数据集的多样性和数量 研究如何通过深度学习技术提高电子冷冻显微镜的结构重建能力 针对电子冷冻显微镜中的蛋白质-核酸复合物进行研究 数字病理学 NA 深度学习,去噪卷积神经网络 卷积神经网络 图像 使用了来自电子显微镜数据银行的多个半集合重建数据对
21491 2024-08-05
Deep Learning-Based Vascular Aging Prediction From Retinal Fundus Images
2024-Jul-01, Translational vision science & technology IF:2.6Q2
研究论文 本研究建立并验证了一种使用视网膜眼底图像筛查血管老化的深度学习模型 Reti-aging评分模型提供了一种新颖的方法用于预测血管老化,尤其适用于不发达地区 目前的方法在发达地区外使用受限,且临床专家的准确性较低 研究目的在于通过视网膜眼底图像预测血管老化 使用8865张视网膜眼底图像及4376名患者的临床参数进行研究 计算机视觉 心血管疾病 深度学习 NA 图像 8865张视网膜眼底图像和4376名患者
21492 2024-08-05
Examining feature extraction and classification modules in machine learning for diagnosis of low-dose computed tomographic screening-detected in vivo lesions
2024-Jul, Journal of medical imaging (Bellingham, Wash.)
研究论文 这项研究评估了医疗成像基础上的机器学习在低剂量计算机断层扫描检测到的肺结节和结直肠息肉的诊断中的特征提取和分类模块的表现 研究提出了三种特征提取方法,并对比了随机森林分类器与深度学习卷积神经网络的性能 研究仅使用三个病灶图像数据集,未考虑更大范围的数据集 评估不同特征提取方法在低剂量CT筛查检测病变中的诊断性能 针对低剂量CT检测的肺结节和结直肠息肉 机器学习 肺癌 计算机断层扫描(CT) 随机森林(RF)和卷积神经网络(CNN) 图像 三个病灶图像数据集
21493 2024-08-05
Evaluating automatically generated normal tissue contours for safe use in head and neck and cervical cancer treatment planning
2024-Jul, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本文定量评估了自动生成的正常组织轮廓在头颈部和宫颈癌治疗计划中的安全性 创新地使用深度学习模型开发了一种自动治疗计划工具,能够生成风险器官和计划结构 研究是回顾性的,可能受限于原始医生绘制轮廓的质量 评估自动生成的轮廓的质量以支持头颈部和宫颈癌的放疗计划 头颈部癌症患者54例和宫颈癌患者39例 数字病理学 头颈癌和宫颈癌 深度学习 NA 自动生成轮廓和临床剂量数据 93个患者的轮廓
21494 2024-08-05
A Comparison of Antibody-Antigen Complex Sequence-to-Structure Prediction Methods and their Systematic Biases
2024-Jun-28, bioRxiv : the preprint server for biology
研究论文 本文比较了六种预测抗体-抗原复合物结构的方法 提出并评估了多种抗体-抗原复合物的序列到结构预测方法,特别突出了AlphaFold-Multimer的优越性能 AlphaFold-Multimer模型的绝对性能仍有较大的改进空间,且存在结构偏差 提高对免疫系统的理解和开发新型抗体治疗的能力 六种预测抗体-抗原复合物结构的方法 机器学习 NA 深度学习 AlphaFold-Multimer, RoseTTAFold, ClusPro, SnugDock, AbAdapt 结构数据 NA
21495 2024-08-05
Unveiling the secrets of gastrointestinal mucous adenocarcinoma survival after surgery with artificial intelligence: A population-based study
2024-Jun-15, World journal of gastrointestinal oncology IF:2.5Q3
研究论文 本文研究了胃肠黏液性腺癌(GMA)在手术后的预后并开发了一种预测模型 提出了一种基于深度学习的工具,可以准确预测GMA患者手术后的生存率 对胃肠黏膜腺癌的研究有限且有争议,缺乏可靠的预测工具 探讨GMA的预后并开发预测模型 从监测、流行病学和结果数据库中收集的GMA患者临床信息 机器学习 胃癌 深度学习 Cox比例风险回归模型 临床数据 共计100%的GMA患者数据,随机抽样后分为发现组(70%)、验证组(20%)和测试组(10%)
21496 2024-08-05
A fully automated classification of third molar development stages using deep learning
2024-06-07, Scientific reports IF:3.8Q1
研究论文 本研究旨在开发一种自动化方法,以分类第三磨牙的发育阶段 引入了一种新颖的机器学习模型,能够准确估计下颚智齿的发育阶段 模型的准确性受到不同架构复杂性和任务特定特征的影响 提高牙齿发育阶段分类的准确性,服务于牙科诊断和治疗规划 3422张由专家评估和分类的正面全景图像(OPG) 数字病理学 NA 深度学习 EfficientNet, MobileNet, ResNet, ShuffleNet等 图像 6624张Opg图像
21497 2024-08-05
Gram matrix: an efficient representation of molecular conformation and learning objective for molecular pretraining
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出使用Gram矩阵作为三维分子结构的紧凑表示和有效的预训练目标 引入Gram矩阵作为三维分子结构的表示,并通过Pre-GTM模型实现更准确的分子性质预测 目前研究未提及Gram矩阵在其他类型分子中的适用性及通用性 旨在提高分子性质预测的准确性,并探索三维分子结构的表示方法 研究集中在三维分子结构及其性质的预测 机器学习 NA 深度学习 Pre-GTM 分子结构数据 在QM9和MoleculeNet任务中使用多个样本进行验证
21498 2024-08-05
Exploiting holographically encoded variance to transmit labelled images through a multimode optical fiber
2024-May-20, Optics express IF:3.2Q2
研究论文 文章探讨了通过多模光纤传输带标签图像的技术. 创新点在于使用全息调制在输出散斑图案上编码额外的变量层,从而提高了系统的传输能力. 该研究的局限性在于高保真重建仅适用于高度均匀的数据集,可能无法充分利用MMF-DNN系统的容量. 研究旨在提升通过多模光纤传输图像的能力, 特别是在带标签图像的情况下. 研究对象为通过多模光纤传输的色彩图像及其RGB组件. 计算机视觉 NA 深度学习 ResUNet 图像 成千上万的图像
21499 2024-08-05
Pseudo-class part prototype networks for interpretable breast cancer classification
2024-05-06, Scientific reports IF:3.8Q1
研究论文 本研究通过原型网络改进乳腺癌分类的可解释性 提出了一种新的方法,利用医学相关信息进行更准确且可解释的预测,并通过聚类概念隐式增加训练数据集中的类别数量 之前使用的ProtoPNet在乳腺癌分类中的应用存在不足 研究在数字病理学中乳腺癌分类的可解释性 乳腺癌分类模型及其可解释性 数字病理学 乳腺癌 NA ProtoPNet 图像 使用BreakHis数据集进行实验评估
21500 2024-08-05
Multicenter Study of the Utility of Convolutional Neural Network and Transformer Models for the Detection and Segmentation of Meningiomas
2024 May-Jun 01, Journal of computer assisted tomography IF:1.0Q4
研究论文 本研究探讨了卷积神经网络和Transformer模型在脑膜瘤检测和分割中的有效性与实用性 首次将卷积神经网络和Transformer模型应用于脑膜瘤的检测和精确分割 研究基于回顾性数据,可能存在数据选择偏倚 评估深度学习模型在脑膜瘤检测和分割中的效率 523名脑膜瘤患者的T1加权和对比增强磁共振图像 计算机视觉 脑膜瘤 深度学习 卷积神经网络和Transformer 图像 523个脑膜瘤患者的图像数据
回到顶部