本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21521 | 2024-08-05 |
Deep learning-based prediction of one-year mortality in Finland is an accurate but unfair aging marker
2024-Jul, Nature aging
IF:17.0Q1
DOI:10.1038/s43587-024-00657-5
PMID:38914859
|
研究论文 | 本文开发了一个深度学习模型,以预测芬兰的一年死亡率,展示了其准确性和不公平性作为老龄化标记 | 提出了一种针对短期死亡率的新型老龄化时钟,并评估了其算法公平性 | 在不同人群中模型性能不均,特别是在劣势群体中面临公平性挑战 | 研究短期死亡风险作为老龄化标记的预测能力 | 芬兰全国人口的纵向数据 | 机器学习 | NA | 深度学习 | 深度学习模型 | 数据 | 540万 |
21522 | 2024-08-05 |
Atomic-Scale 3D Structure of a Supported Pd Nanoparticle Revealed by Electron Tomography with Convolution Neural Network-Based Image Inpainting
2024-Jul, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202301163
PMID:38044263
|
研究论文 | 该研究利用电子断层成像和深度学习方法分析了支持金属纳米颗粒的三维原子结构 | 提出了一种基于深度学习的图像修复方法,有效分离并重建了支持的Pd纳米颗粒的三维结构 | 研究中未提及具体的样本选择标准和实验重复性问题 | 分析金属纳米颗粒的原子级三维结构并理解其催化性质 | 支持的Pd纳米颗粒及其与支持材料的界面 | 数字病理学 | NA | 电子断层成像,深度学习图像修复 | NA | 图像 | 观察到一个11 nm的Pd纳米颗粒 |
21523 | 2024-08-05 |
Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks
2024-Feb-28, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-45323-x
PMID:38418469
|
研究论文 | 本文介绍了一种新架构,名为潜在动力学网络,能够揭示潜在非马尔可夫系统中的低维内在动力学 | 提出了一种轻量级的潜在动力学网络,可以在无需高维空间操作的情况下自动发现低维流形,并在时间外推场景中进行分布的预测 | 未明确提出研究的特定限制因素 | 研究复杂空间时间过程在外部刺激下的进化预测 | 针对潜在的非马尔可夫系统进行探索性研究 | 机器学习 | NA | 深度学习算法 | 潜在动力学网络 | 低维空间数据 | NA |
21524 | 2024-08-05 |
Feature extraction method of EEG based on wavelet packet reconstruction and deep learning model of VR motion sickness feature classification and prediction
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0305733
PMID:39028732
|
研究论文 | 提出了基于小波包重构的EEG特征提取方法,并利用深度学习模型对虚拟现实运动病特征进行分类和预测 | 采用增强的GRU网络分析EEG数据,开发了一种高效的深度学习模型,实现了84.9%的运动病分类和预测准确率 | 尚未提及特定的局限性 | 研究旨在改善虚拟现实体验和推动虚拟现实技术的发展 | 研究对象为虚拟现实环境下的用户EEG数据和反馈信息 | 机器学习 | NA | EEG | GRU | NA | NA |
21525 | 2024-08-05 |
Deep Clustering of Electronic Health Records Tabular Data for Clinical Interpretation
2023-Dec, ... IEEE International Conference on Telecommunications and Photonics. IEEE International Conference on Telecommunications and Photonics
DOI:10.1109/ictp60248.2023.10490723
PMID:39027675
|
研究论文 | 本研究提出了一种基于临床变量的患者分层策略,并评估了聚类性能。 | 创新点在于提出了一种基于临床变量进行患者分层的新策略,并采用深度学习方法改善了聚类效果。 | 本研究局限于使用传统聚类算法进行比较,未涉及其他复杂模型的应用。 | 本研究旨在提高对患者数据的理解和分析,特别是在没有明确诊断标签的情况下。 | 研究对象为高血压患者群体,通过聚类分析识别了不同患者簇。 | 机器学习 | NA | 深度学习 | NA | 表格数据 | NA |
21526 | 2024-08-05 |
Generative adversarial network constrained multiple loss autoencoder: A deep learning-based individual atrophy detection for Alzheimer's disease and mild cognitive impairment
2023-02-15, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.26146
PMID:36394351
|
研究论文 | 本文提出了一种生成对抗网络约束的多损失自编码器框架用于阿尔茨海默病和轻度认知障碍的个体萎缩检测 | 提出了一种新颖的GANCMLAE模型,能够精确描述个体大脑萎缩模式并具有良好的临床应用潜力 | 尚缺乏对其他人群或更广泛样本的验证,以评估模型的通用性 | 研究个体大脑萎缩模式,以提高阿尔茨海默病和轻度认知障碍的精准医学 | 正常对照组与阿尔茨海默病和轻度认知障碍患者 | 数字病理学 | 阿尔茨海默病 | 生成对抗网络 | 自编码器 | 图像 | 来自阿尔茨海默病神经影像学倡议队列的正常对照组和Xuanwu队列的数据 |
21527 | 2024-08-07 |
CNN-MGP: Convolutional Neural Networks for Metagenomics Gene Prediction
2019-Dec, Interdisciplinary sciences, computational life sciences
DOI:10.1007/s12539-018-0313-4
PMID:30588558
|
研究论文 | 本文介绍了一种基于卷积神经网络的元基因组基因预测程序CNN-MGP,该程序能够直接从原始DNA序列中预测元基因组片段中的基因,无需手动特征提取和特征选择阶段 | CNN-MGP利用深度学习技术,能够学习编码和非编码区域的特征,并区分编码和非编码开放阅读框(ORFs),其准确性高于或相当于使用预定义特征的最先进的基因预测程序 | NA | 开发一种新的基因预测方法,以提高元基因组片段中基因预测的准确性 | 元基因组片段中的基因预测 | 机器学习 | NA | 卷积神经网络(CNN) | CNN | DNA序列 | 10个CNN模型基于预定义的GC含量范围训练于10个互斥数据集 |
21528 | 2024-08-07 |
Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes
2019-11-12, Journal of biomedical semantics
IF:1.6Q3
DOI:10.1186/s13326-019-0212-6
PMID:31711540
|
研究论文 | 本文探讨了如何利用语义深度学习方法,从PubMed系统评价和兽医临床笔记中提取关于人类和动物健康的诊断、预后、治疗等信息,并将其转化为可计算的知识 | 结合语义网络技术和深度学习,开发了一种新的方法来处理和映射缩写形式,并使用现有本体正式表示关联 | NA | 探索如何将非结构化自由文本数据转化为可靠且可重用的一体化健康知识 | 从PubMed系统评价和兽医临床笔记中提取的11种常见医疗状况的相关临床概念 | 机器学习 | NA | 语义深度学习 | 深度学习方法 | 文本 | 30万篇PubMed系统评价文章和250万份兽医临床笔记 |
21529 | 2024-08-07 |
Deep learning for pollen allergy surveillance from twitter in Australia
2019-11-08, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-019-0921-x
PMID:31699071
|
研究论文 | 本文介绍了一种基于深度学习的实时检测和生成关于澳大利亚最普遍的慢性疾病之一——花粉过敏的洞察的方法 | 该系统解决了传统机器学习技术手动特征工程的局限性,能够处理与医学概念相关的广泛非标准表达 | NA | 开发一种基于社交媒体数据的花粉过敏监测方法 | 澳大利亚的花粉过敏情况 | 机器学习 | 花粉过敏 | 深度学习 | CNN, RNN, LSTM, GRU | 文本 | 6个月期间从Twitter提取的数据 |
21530 | 2024-08-07 |
Training the next generation of Africa's doctors: why medical schools should embrace the team-based learning pedagogy
2019-Nov-04, BMC medical education
IF:2.7Q1
DOI:10.1186/s12909-019-1845-y
PMID:31699081
|
研究论文 | 本文探讨了非洲医学院应采用团队为基础的学习(TBL)教学法以培养全面发展的医生 | 提出TBL作为一种强有力的替代方法,能够在当前环境下提供全面的医学教育,促进学生'硬技能'和'软技能'的发展 | 讨论了TBL在非洲实施初期可能面临的挑战 | 推动非洲医学教育采用团队为基础的学习方法,以培养适应未来医疗需求的医生 | 非洲的医学教育及其面临的挑战 | NA | NA | NA | NA | NA | NA |
21531 | 2024-08-07 |
Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction
2019-10-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-51779-5
PMID:31664075
|
研究论文 | 本文开发了一种直接处理原始计算机断层扫描(CT)数据而不进行图像重建的系统,通过在正弦图空间中进行机器学习,实现了身体区域识别和颅内出血(ICH)检测。 | 本文提出的SinoNet模型,是一种针对正弦图优化的卷积神经网络,能够在正弦图空间中直接处理CT数据,无需图像重建,且在稀疏采样正弦图上表现优于传统图像空间网络。 | NA | 开发一种新的机器学习系统,直接处理原始CT数据,跳过图像重建步骤,以提高医疗图像分析的效率和准确性。 | 身体区域识别和颅内出血(ICH)检测 | 机器学习 | 颅内出血 | NA | 卷积神经网络(CNN) | 正弦图 | NA |
21532 | 2024-08-07 |
Deep learning-based optical field screening for robust optical diffraction tomography
2019-10-23, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-51363-x
PMID:31645595
|
研究论文 | 本文提出了一种基于深度学习的光场筛选方法,用于提高光学衍射断层成像(ODT)的鲁棒性和高吞吐量 | 通过将专家知识融入深度卷积神经网络,实现了对缺陷2D图像的高效自动筛选 | NA | 提高光学衍射断层成像的图像质量和处理效率 | 光学场图像的质量控制 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | 包含清洁和噪声标注的大量光学场图像数据集 |
21533 | 2024-08-07 |
QM-sym, a symmetrized quantum chemistry database of 135 kilo molecules
2019-10-18, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-019-0237-9
PMID:31628326
|
研究论文 | 本文构建了一个名为QM-sym的新量子化学数据库,包含135k个具有Ch对称性的有机分子,并计算了这些分子的几何、电子、能量和热力学性质。 | QM-sym数据库包含了罕见的对称性信息,可以显著降低结构计算的复杂性,并简化为最小对称单元。 | NA | 解决传统从头算量子化学方法耗时的问题,并提供一个包含对称性信息的量子化学数据库。 | 135k个具有Ch对称性的有机分子及其量子化学性质。 | 量子化学 | NA | Gaussian 09 | NA | 数据库 | 135k个有机分子 |
21534 | 2024-08-07 |
Hands-Free User Interface for AR/VR Devices Exploiting Wearer's Facial Gestures Using Unsupervised Deep Learning
2019-Oct-14, Sensors (Basel, Switzerland)
DOI:10.3390/s19204441
PMID:31614988
|
研究论文 | 本研究提出了一种利用佩戴者面部表情识别用户意图的无手操作界面,适用于增强现实(AR)头戴设备 | 设计了一种基于红外扩散特性的人体皮肤变形检测传感器,并开发了一种无监督深度学习方法来识别面部表情 | NA | 开发适用于头戴环境的增强现实技术用户界面 | 增强现实头戴设备的用户界面 | 计算机视觉 | NA | 无监督深度学习 | 时空自编码器和深度嵌入聚类算法 | 皮肤变形数据 | NA |
21535 | 2024-08-07 |
Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT
2019-Oct-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.10.005042
PMID:31646029
|
研究论文 | 本文提出了一种基于深度学习的网络,用于从视网膜OCT图像中提取连续、平滑且保证拓扑结构的表面和MME分割 | 该网络在训练过程中自动学习形状先验,而不是像图方法那样硬编码。此外,该方法通过两个级联的深度网络在一次前向传播中同时分割视网膜表面和MME,提高了分割的准确性和速度 | NA | 开发一种新的深度学习框架,用于从视网膜OCT图像中准确快速地分割多发性硬化症患者的视网膜层和MME | 多发性硬化症患者的视网膜层和微囊性黄斑水肿(MME) | 计算机视觉 | 多发性硬化症 | 深度学习 | 深度网络 | 图像 | 3D体积数据 |
21536 | 2024-08-07 |
Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images
2019-Oct, Ophthalmic medical image analysis : 6th International Workshop, OMIA 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, Proceedings. OMIA (Workshop) (6th : 2019 : Shenzhen Shi, China)
DOI:10.1007/978-3-030-32956-3_11
PMID:31701095
|
研究论文 | 本文开发了一种AOSeg-Net方法,利用多通道U-Net预测细胞边界的空间概率,并通过区域级水平集算法实现亚像素级别的细胞分割 | 提出了一种新的AOSeg-Net方法,结合五色定理和区域级水平集算法,有效解决了在低对比度、各向异性区域和密集细胞边界接触的AO图像中细胞分割的难题 | NA | 实现高分辨率视网膜图像中光感受器细胞的亚像素级别分割 | 光感受器细胞的形态评估 | 计算机视觉 | NA | NA | U-Net | 图像 | 428张高分辨率视网膜图像,来自23名人类受试者 |
21537 | 2024-08-07 |
Deep Learning on Point Clouds and Its Application: A Survey
2019-Sep-26, Sensors (Basel, Switzerland)
DOI:10.3390/s19194188
PMID:31561639
|
综述 | 本文综述了点云特征学习的现有方法,包括基于点和基于树的方法,并分析了它们的优缺点,介绍了点云特征学习的应用,并预测了未来的研究趋势 | 将深度学习应用于点云处理,探索了基于点和基于树的点云特征学习方法 | 文章未明确提及具体的技术局限性 | 综述点云特征学习的现有方法及其应用,并预测未来研究趋势 | 点云数据及其在3D物体分类、语义分割和3D物体检测中的应用 | 计算机视觉 | NA | 深度学习 | CNN | 点云 | 文章未提及具体样本数量 |
21538 | 2024-08-07 |
A Survey of Vision-Based Human Action Evaluation Methods
2019-Sep-24, Sensors (Basel, Switzerland)
DOI:10.3390/s19194129
PMID:31554229
|
综述 | 本文综述了基于视觉的人类动作评估方法和技术 | 介绍了动作评估研究中的运动检测和预处理、手工特征表示方法以及基于深度学习的特征表示方法 | 未提及具体限制 | 旨在设计用于自动评估人类动作质量的计算模型和评估方法 | 人类动作评估 | 计算机视觉 | NA | 深度学习 | NA | 骨骼数据 | 未提及具体样本数量 |
21539 | 2024-08-07 |
Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells
2019-08-15, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2019.03.002
PMID:30853548
|
研究论文 | 本文提出了结合一维序列特异性、表观基因组信息和转录因子结合位点的机器学习模型,用于解释在人类淋巴母细胞中观察到的长距离染色质环化现象 | 本文创新性地将机器学习模型与基于聚合物的生物物理模拟相结合,以预测高分辨率的拓扑关联域内相互作用 | NA | 研究目的是解释人类淋巴母细胞中观察到的长距离染色质环化现象 | 研究对象是人类淋巴母细胞中的三维染色质结构 | 机器学习 | NA | ChIA-PET | 随机森林、梯度提升机、深度学习模型 | 序列、表观基因组信息、转录因子结合位点 | GM12878细胞系 |
21540 | 2024-08-07 |
Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT)
2019-07-23, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/ab21b2
PMID:31091516
|
研究论文 | 本文提出了一种新的绝对电阻抗断层成像(a-EIT)图像重建方法,结合深度学习技术和实时鲁棒的D-bar方法,并探讨了先验信息对重建结果的影响 | 本文的创新点在于使用Beltrami方程生成训练数据,使得训练数据不受边界形状的限制,从而训练出更通用的网络 | NA | 开发并验证一种新的绝对电阻抗断层成像(a-EIT)图像重建方法的可行性 | 电阻抗断层成像(EIT)的图像重建 | 计算机视觉 | NA | D-bar方法 | CNN | 图像 | 使用了来自两个EIT系统(ACT4和KIT4)的实验数据,训练集包含不同先验信息 |