本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2141 | 2025-07-20 |
Brain Age Prediction: Deep Models Need a Hand to Generalize
2025-Aug-01, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.70254
PMID:40667664
|
研究论文 | 本研究探讨了如何通过深度学习方法预测脑龄,并针对模型在新数据上的泛化问题提出了改进策略 | 通过综合预处理、广泛数据增强和模型正则化,显著减少了脑龄预测模型的泛化误差,并提高了对配准错误的鲁棒性 | 研究依赖于特定数据集(UK Biobank),可能在其他人群中的适用性有待验证 | 提高脑龄预测模型的临床适用性,缩小训练数据与未见数据之间的泛化差距 | T1加权MRI图像 | 神经影像分析 | 阿尔茨海默病 | 深度学习 | SFCN-reg(基于VGG-16架构) | MRI图像 | UK Biobank数据集、阿尔茨海默病神经影像计划数据集和澳大利亚影像、生物标志物和生活方式数据集 |
2142 | 2025-07-20 |
Deep learning can predict cardiovascular events from liver imaging
2025-Aug, JHEP reports : innovation in hepatology
IF:9.5Q1
DOI:10.1016/j.jhepr.2025.101427
PMID:40671834
|
研究论文 | 本研究探讨了使用基于视觉Transformer的深度学习模型从肝脏MRI数据中预测心血管事件的风险 | 首次将视觉Transformer应用于肝脏MRI数据,无需手动特征选择即可预测心血管风险 | 需要进一步的前瞻性研究和外部验证以确认临床实用性 | 通过肝脏MRI数据提高心血管风险的预测能力 | UK Biobank中的肝脏MRI数据 | 数字病理学 | 心血管疾病 | MRI | Transformer | 图像 | 44,672个肝脏MRI扫描 |
2143 | 2025-07-20 |
Identifying and Evaluating Salt-Tolerant Halophytes Along a Tropical Coastal Zone: Growth Response and Desalination Potential
2025-Aug, Plant-environment interactions (Hoboken, N.J.)
DOI:10.1002/pei3.70072
PMID:40672803
|
研究论文 | 本研究通过深度学习和温室实验,评估了加纳沿海地区盐生植物的耐盐性和脱盐潜力 | 利用深度学习图像识别技术鉴定植物种类,并结合温室实验评估盐生植物在不同盐浓度和土壤类型下的生长响应 | 研究仅针对加纳沿海地区的五种盐生植物,可能无法代表所有盐生植物的特性 | 探索加纳沿海地区盐生植物的营养、生态和药用价值,特别是其耐盐性和脱盐能力 | 加纳沿海地区的盐生植物 | 植物学与环境科学 | NA | 深度学习图像识别 | NA | 图像与实验数据 | 五种选定的盐生植物,在不同盐浓度(0、25和50 dS/m)和土壤类型(海沙和耕地土壤)下进行实验 |
2144 | 2025-07-20 |
ViCoW: A dataset for colorization and restoration of Vietnam War imagery
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111815
PMID:40673188
|
研究论文 | 介绍了一个名为ViCoW的数据集,用于支持越南战争时期历史图像的修复和着色研究 | 提供了一个包含1896对高分辨率图像的数据集,专门用于历史图像的修复和着色,填补了该领域的数据空白 | 数据集仅包含来自四部越南电影的图像,可能无法涵盖所有历史场景和视觉多样性 | 支持历史图像修复和着色技术的研究,促进数字遗产保护 | 越南战争时期的电影图像 | 计算机视觉 | NA | ITU-R BT.601亮度公式 | 深度学习模型 | 图像 | 1896对高分辨率图像 |
2145 | 2025-07-20 |
Smartphone image dataset for machine learning-based monitoring and analysis of mango growth stages
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111780
PMID:40673194
|
research paper | 该研究创建了一个标准化的芒果生长阶段图像数据集,用于基于机器学习的监测和分析 | 开发了一个标准化且公开可用的芒果生长阶段图像数据集,填补了孟加拉国农业领域缺乏高质量数据集的空白 | 数据集仅基于孟加拉国某一果园的芒果,尽管生长阶段具有全球代表性,但可能无法涵盖所有芒果品种或生长条件 | 促进机器学习在农业领域的应用,特别是芒果生长阶段的自动化监测和分析 | 芒果的生长阶段 | computer vision | NA | 图像采集与标注 | NA | image | 2004张图像,分为四个生长阶段:早期果实、未成熟、成熟和熟透 |
2146 | 2025-07-20 |
Deep learning empowers genomic selection of pest-resistant grapevine
2025-Aug, Horticulture research
IF:7.6Q1
DOI:10.1093/hr/uhaf128
PMID:40673235
|
研究论文 | 本研究整合深度学习、植物表型组学、定量遗传学和转录组学,对葡萄藤的抗虫性进行基因组选择 | 利用深度卷积神经网络(DCNNs)准确评估葡萄叶片的虫害损伤,并结合基因组重测序数据和转录组数据,识别与抗虫性相关的基因 | NA | 通过深度学习与基因组选择技术,培育抗虫性葡萄藤品种 | 葡萄藤及其抗虫性相关基因 | 机器学习 | NA | 基因组重测序、转录组学 | DCNN、VGG16、ML | 图像、基因组数据、转录组数据 | 231个葡萄藤种质资源 |
2147 | 2025-07-20 |
Deep learning's crystal ball: Predicting HCC surgery success with multimodal imaging
2025-Aug-01, Hepatology (Baltimore, Md.)
DOI:10.1097/HEP.0000000000001410
PMID:40680277
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
2148 | 2025-07-20 |
Modelling In vitro Mutagenicity Using Multi-Task Deep Learning and REACH Data
2025-Jul-18, Chemical research in toxicology
IF:3.7Q2
DOI:10.1021/acs.chemrestox.5c00152
PMID:40680271
|
研究论文 | 本研究探讨了利用多任务深度学习和REACH数据建立体外诱变模型的可能性 | 利用多任务深度学习模型探索不同诱变性检测方法之间的内在关联,并比较其与单任务模型的性能差异 | 外部测试集的阳性样本和阴性样本数量需至少各200个才能获得较好的预测准确率 | 开发更准确的体外诱变性预测模型 | 超过12,000种化学物质 | 机器学习 | NA | 多任务深度学习 | 图神经网络(GNN) | 化学结构数据 | 超过12,000种化学物质 |
2149 | 2025-07-20 |
Computer vision techniques for high-speed atomic force microscopy of DNA molecules
2025-Jul-16, Nanotechnology
IF:2.9Q2
DOI:10.1088/1361-6528/ade888
PMID:40570888
|
研究论文 | 探讨深度学习技术在高速原子力显微镜(HSAFM)图像分析中的应用,以提高DNA分子检测和分类的效率 | 首次将全卷积网络(FCN)和YOLOv8架构应用于HSAFM图像分析,显著提高了DNA分子检测的准确性和效率 | 研究仅针对特定遗传疾病(三核苷酸重复扩增疾病和脆性X综合征)的样本,可能不适用于其他类型的DNA分析 | 开发自动化方法以加速HSAFM图像分析流程,实现快速精准的基因组疾病诊断 | 来自三核苷酸重复扩增疾病和脆性X综合征患者的DNA分子 | 计算机视觉 | 遗传疾病 | 高速原子力显微镜(HSAFM) | FCN, YOLOv8 | 图像 | 20000张包含DNA分子的图像,其中标记了248个分子(33个为真实目标) |
2150 | 2025-07-20 |
An interpretable machine learning model for predicting bone marrow invasion in patients with lymphoma via 18F-FDG PET/CT: a multicenter study
2025-Jul-15, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-025-03110-8
PMID:40665334
|
研究论文 | 开发并验证了一种可解释的机器学习模型,用于预测淋巴瘤患者的骨髓侵犯 | 整合了临床数据、18F-FDG PET/CT参数、放射组学特征和深度学习特征,构建了一个可解释的预测模型 | 样本量较小(159例患者),且仅来自两个中心 | 预测淋巴瘤患者的骨髓侵犯,以减少对侵入性骨髓活检的依赖 | 新诊断的淋巴瘤患者 | 数字病理 | 淋巴瘤 | 18F-FDG PET/CT | ExtraTrees分类器 | 临床数据、影像数据 | 159例新诊断的淋巴瘤患者(118例来自中心I,41例来自中心II) |
2151 | 2025-07-20 |
A cryptosystem for face recognition based on optical interference and phase truncation theory
2025-Jul-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-06990-y
PMID:40659666
|
研究论文 | 本研究提出了一种基于光学干涉和相位截断理论的人脸识别加密系统,旨在解决面部图像数据的安全传输和存储问题 | 引入了振幅-相位分离异步加密(APSAE)技术,通过分别异步加密振幅和相位分量来减轻固有漏洞 | NA | 解决面部图像隐私泄露的关键问题,并推动安全生物识别系统的发展 | 面部图像数据 | 计算机视觉 | NA | 光学干涉和相位截断理论 | 深度学习 | 图像 | Labeled Faces in the Wild (LFW) 数据集 |
2152 | 2025-07-20 |
New Bayesian and deep learning spatio-temporal models can reveal anomalies in sensor data more effectively
2025-Jul-10, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2025.123928
PMID:40680322
|
研究论文 | 本文介绍了两种新的无监督方法,用于检测时空传感器阵列中的异常,特别适用于河流传感器网络等高度结构化数据集 | 提出了两种新方法:基于动态贝叶斯的降秩高斯过程时空模型和基于时空注意力的LSTM深度学习架构,并引入了一种集成方法结合两者的优势 | 虽然展示了优于现有方法的性能,但未提及在极端环境条件下的适用性或对传感器故障类型的覆盖范围 | 开发鲁棒高效的算法和计算方法,用于监测复杂生态系统中的时空异常 | 河流传感器网络获取的时空传感器数据 | 机器学习 | NA | 动态贝叶斯建模, 深度学习 | 降秩高斯过程, LSTM | 时空传感器数据 | NA |
2153 | 2025-07-20 |
Effective generation of heavy-atom-free triplet photosensitizers containing multiple intersystem crossing mechanisms based on deep learning
2025-Jul-08, Chemical science
IF:7.6Q1
DOI:10.1039/d5sc03192c
PMID:40671753
|
研究论文 | 本文提出了一种基于深度学习的策略,用于高效生成不含重原子的三重态光敏剂,这些光敏剂包含多种系间窜越机制 | 提出了一种结合片段模型和字符模型的新策略,用于生成具有多种系间窜越机制的三重态光敏剂,显著提高了预测准确性和多样性 | 现有方法主要针对有限的三重态光敏剂子集,如热激活延迟荧光材料,忽略了高能单重态和三重态之间的关键系间窜越 | 开发一种高效生成三重态光敏剂的方法,以应用于光动力治疗 | 三重态光敏剂 | 机器学习 | 癌症 | 深度学习、条件变换器、循环神经网络、强化学习 | Frag-MD、MD | 化学数据 | 约1.90×10的三重态光敏剂数据集 |
2154 | 2025-07-20 |
Quantification of Optical Coherence Tomography Features in >3500 Patients with Inherited Retinal Disease Reveals Novel Genotype-Phenotype Associations
2025-Jul-03, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.07.03.25330767
PMID:40630585
|
研究论文 | 本研究利用深度学习算法AIRDetect-OCT对超过3500名遗传性视网膜疾病患者的SD-OCT图像进行量化分析,揭示了新的基因型-表型关联 | 开发了新型深度学习算法AIRDetect-OCT,实现了大规模OCT特征量化,并发现了人口统计学和基因型参数与表型的横断面和纵向相关性 | 研究为回顾性设计,可能受到数据收集时的限制 | 量化遗传性视网膜疾病患者的SD-OCT图像特征,探索基因型-表型关联 | 4240名经临床和分子确诊的遗传性视网膜疾病患者 | 数字病理学 | 遗传性视网膜疾病 | 光谱域光学相干断层扫描(SD-OCT) | 神经网络分割模型(AIRDetect-OCT) | 图像 | 4240名患者(涉及198个不同的IRD基因),包括69,664个SD-OCT黄斑体积数据 |
2155 | 2025-07-20 |
Beyond static structures: protein dynamic conformations modeling in the post-AlphaFold era
2025-Jul-02, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf340
PMID:40663654
|
review | 本文综述了蛋白质动态构象的基本概念,探讨了后AlphaFold时代在建模这些动态方面的最新计算进展,并强调了关键挑战 | 从静态结构预测转向多状态表示,以理解蛋白质功能和调控的机制基础 | 数据限制、方法学约束和评估标准 | 促进人工智能驱动的结构生物学时代中蛋白质构象研究的持续发展 | 蛋白质动态构象 | 结构生物学 | NA | 深度学习 | AlphaFold | 蛋白质结构数据 | NA |
2156 | 2025-07-20 |
Kinase-inhibitor binding affinity prediction with pretrained graph encoder and language model
2025-Jul-02, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf338
PMID:40663653
|
研究论文 | 本研究提出了一种名为Kinhibit的新框架,用于预测抑制剂与激酶的结合亲和力,结合了自监督图对比学习和多视图分子图表示以及结构信息蛋白质语言模型(ESM-S) | Kinhibit框架整合了自监督图对比学习和多视图分子图表示,以及结构信息蛋白质语言模型(ESM-S),有效提取特征并优化抑制剂和激酶特征的融合 | 未明确提及具体局限性 | 开发更先进的方法以解决抑制剂-激酶结合预测中的现有问题 | 抑制剂与激酶的结合亲和力 | 机器学习 | 癌症 | 自监督图对比学习, 多视图分子图表示, 结构信息蛋白质语言模型(ESM-S) | Kinhibit | 分子图数据, 蛋白质序列数据 | 三种MAPK信号通路激酶(Raf蛋白激酶(RAF)、丝裂原活化蛋白激酶激酶(MEK)和细胞外信号调节激酶(ERK))及MAPK-All数据集 |
2157 | 2025-07-20 |
PREDAC-FluB: predicting antigenic clusters of seasonal influenza B viruses with protein language model embedding based convolutional neural network
2025-Jul-02, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf308
PMID:40665740
|
研究论文 | 提出PREDAC-FluB,一种结合蛋白质语言模型嵌入和CNN的深度学习框架,用于预测季节性流感B病毒的抗原簇 | 整合CNN空间特征提取、ESM-2嵌入与六种物理化学描述符的多模态序列表示(ESM2-7-features),以及UMAP引导的聚类方法,首次针对流感B病毒建立抗原变异预测模型 | 仅针对B型流感病毒(Victoria和Yamagata谱系),未验证在其他流感病毒亚型的适用性 | 准确预测流感B病毒抗原变异以辅助疫苗株选择 | 9036个B/Victoria谱系和4520个B/Yamagata谱系流感病毒对的HA1序列 | 生物信息学 | 流感 | 蛋白质语言模型(ESM-2)、多维物化特征编码 | CNN(卷积神经网络) | 蛋白质序列 | 总计13556个病毒样本(B/Victoria:9036, B/Yamagata:4520) |
2158 | 2025-07-20 |
NASNet-DTI: accurate drug-target interaction prediction using heterogeneous graphs and node adaptation
2025-Jul-02, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf342
PMID:40668556
|
研究论文 | 提出了一种基于异构图和节点自适应的药物-靶点相互作用预测新框架NASNet-DTI | 采用节点自适应学习策略动态确定每个节点的最优聚合深度,有效缓解了图神经网络中的过平滑问题 | 未明确说明模型在更大规模数据集上的泛化能力 | 提高药物-靶点相互作用预测的准确性 | 药物分子和靶点蛋白 | 生物信息学 | NA | 图卷积网络 | GNN | 图数据 | 多个数据集(未明确说明具体数量) |
2159 | 2025-07-20 |
Advancing genome-based precision medicine: a review on machine learning applications for rare genetic disorders
2025-Jul-02, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf329
PMID:40668553
|
综述 | 本文综述了机器学习在基于基因组的精准医学中针对罕见遗传病的应用 | 强调了机器学习在疾病分类、治疗优化和生物标志物发现中的作用,并讨论了混合ML模型和实时基因组分析等进展 | 面临计算复杂性、数据稀缺性和伦理问题等挑战 | 推动基于基因组的精准医学在罕见遗传病中的应用 | 罕见遗传病 | 机器学习 | 罕见遗传病 | 基因组数据分析 | 深度学习、集成方法、混合ML模型 | 基因组数据 | NA |
2160 | 2025-07-20 |
Deep Learning Radiomics Based on MRI for Differentiating Benign and Malignant Parapharyngeal Space Tumors
2025-Jul, The Laryngoscope
DOI:10.1002/lary.32043
PMID:39932109
|
研究论文 | 本研究基于MRI的深度学习放射组学方法,用于区分咽旁间隙肿瘤的良恶性 | 结合深度学习和传统放射组学特征,开发了深度学习放射组学(DLR)模型,显著提高了诊断性能 | 回顾性研究,样本量相对较小(217例),且仅来自两个医疗中心 | 建立一种基于深度学习和放射组学特征的预学术诊断工具,指导咽旁间隙肿瘤的临床决策 | 咽旁间隙肿瘤患者 | 数字病理 | 咽旁间隙肿瘤 | MRI | 深度学习放射组学(DLR)模型 | 图像 | 217例患者(训练集145例,测试集72例) |