深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26404 篇文献,本页显示第 201 - 220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
201 2025-06-13
Active learning to classify macromolecular structures in situ for less supervision in cryo-electron tomography
2021-Aug-25, Bioinformatics (Oxford, England)
research paper 提出了一种混合主动学习框架HAL,用于在冷冻电子断层扫描中减少对大量标注数据的依赖 结合不确定性采样和判别器策略,减少标注负担并保持分类性能 在真实数据上的性能可能受到成像限制和结构复杂性的影响 减少冷冻电子断层扫描中分子结构分类的标注需求 冷冻电子断层扫描中的大分子结构 digital pathology NA cryo-ET deep learning 3D bioimaging data 模拟和真实数据
202 2025-06-12
The performance of artificial intelligence in image-based prediction of hematoma enlargement: a systematic review and meta-analysis
2025-Dec, Annals of medicine IF:4.9Q1
系统综述与荟萃分析 本文系统综述和荟萃分析了人工智能在基于图像的脑血肿扩大预测中的性能 首次系统评估和比较了机器学习和深度学习在预测脑血肿扩大方面的性能 纳入研究的异质性较高,部分研究样本量较小 评估人工智能算法在预测脑血肿扩大方面的诊断性能 脑出血患者的CT影像数据 数字病理学 脑出血 CT影像分析 机器学习和深度学习 医学影像 36篇文献纳入定性分析,其中23篇用于定量分析
203 2025-06-12
Artificial intelligence (AI)-driven morphological assessment of zebrafish larvae for developmental toxicity chemical screening
2025-Aug, Aquatic toxicology (Amsterdam, Netherlands)
研究论文 利用深度学习模型对斑马鱼幼虫进行形态学评估,以支持发育毒性化学物质筛选 开发了基于多视角卷积神经网络(MVCNN)的分类和分割模型,用于自动评估斑马鱼幼虫的形态变化,提高了评估的客观性和效率 模型性能在某些特定形态变化分类上仍有提升空间(F1分数低于0.70) 为毒理学评估中斑马鱼的常规使用提供科学依据,开发自动化评估工具 暴露于各种化学物质5天的斑马鱼胚胎 计算机视觉 NA 深度学习 MVCNN(多视角卷积神经网络) 图像 SEAZIT项目收集的斑马鱼胚胎图像数据(具体数量未说明)
204 2025-06-12
Scale-equivariant deep model-based optoacoustic image reconstruction
2025-Aug, Photoacoustics IF:7.1Q1
research paper 本文提出了一种尺度等变的基于模型的深度学习方法,用于多光谱光声断层扫描的图像重建 提出了一种尺度等变的基于模型的重建算子,能够根据输入正弦图的范数自动调整正则化强度,并促进了使用固定范数输入正弦图的监督深度学习 未提及具体的数据集或实验规模限制 优化多光谱光声断层扫描的图像重建质量 多光谱光声断层扫描的图像重建 digital pathology NA 多光谱光声断层扫描 scale-equivariant model-based reconstruction operator image NA
205 2025-06-12
Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection
2025-Jul, Medical image analysis IF:10.7Q1
研究论文 本文介绍了一项名为虚拟肺部筛查试验(VLST)的计算机模拟研究,旨在通过模拟临床试验的关键元素来加速临床研究并减少参与者风险 利用虚拟成像试验(VITs)模拟临床试验,特别是国家肺部筛查试验(NLST),以无风险的方式评估CT和CXR在肺癌筛查中的诊断性能 研究基于模拟数据,可能无法完全反映真实临床环境的复杂性 探索虚拟成像试验平台在模拟和加速临床试验中的潜力,特别是在肺癌筛查领域 模拟的肺癌结节和由XCAT人体模型生成的294名虚拟患者 数字病理学 肺癌 CT和CXR成像 深度学习模型(AI CT-Reader和AI CXR-Reader) 图像 294名虚拟患者
206 2025-06-12
Meta-analysis of AI-based pulmonary embolism detection: How reliable are deep learning models?
2025-Jul, Computers in biology and medicine IF:7.0Q1
meta-analysis 该论文通过荟萃分析评估了基于深度学习的肺栓塞检测模型的性能,并比较了CNN和U-Net架构的诊断效果 首次通过荟萃分析比较了CNN和U-Net在肺栓塞检测中的性能差异,并提供了两种架构的互补优势证据 研究间存在高度异质性(I2≈97%),且假设了50%的肺栓塞患病率可能影响结果准确性 评估深度学习算法在CT肺动脉造影中检测肺栓塞的诊断效能 深度学习模型(特别是CNN和U-Net架构)在肺栓塞检测中的应用 digital pathology pulmonary embolism CTPA CNN, U-Net medical imaging 24项研究(共22,984名患者)
207 2025-06-12
Artificial intelligence in resuscitation: a scoping review
2025-Jul, Resuscitation plus IF:2.1Q2
综述 本文通过范围综述方法,探讨了人工智能在心脏骤停复苏领域的应用现状和研究缺口 首次系统性梳理了AI在复苏领域的应用范围和方法学特征,并识别出关键研究缺口 纳入研究多为回顾性分析(90%),仅含2项随机对照试验,外部验证和实际临床应用有限 绘制AI在心脏骤停和复苏领域应用的研究图谱并识别未来研究方向 人工智能在心脏骤停预测、心律分类和复苏后预后评估中的应用 医疗人工智能 心脏骤停 机器学习(50%)、深度学习、自然语言处理 NA 临床数据 197项符合纳入标准的研究(从4046篇文献中筛选)
208 2025-06-12
Intermuscular adipose tissue and lean muscle mass assessed with MRI in people with chronic back pain in Germany: a retrospective observational study
2025-Jul, The Lancet regional health. Europe
研究论文 本研究通过MRI评估了德国慢性背痛患者的肌肉间脂肪组织和瘦肌肉质量,并探讨了它们与慢性背痛的关联 首次在大规模人群中使用全身MRI数据量化肌肉间脂肪组织和瘦肌肉质量,并分析其与慢性背痛的关联 横断面研究设计无法确定因果关系 探讨肌肉组成与慢性背痛之间的关联 30,868名德国国家队列(NAKO)参与者 医学影像分析 慢性背痛 全身MRI扫描和深度学习模型 深度学习模型 MRI图像数据 30,868名参与者(其中27,518人纳入最终分析)
209 2025-06-12
Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders
2025-Jul, Biological psychiatry global open science
研究论文 该研究探讨了心理韧性对世界贸易中心救援人员大脑衰老速度的影响 首次在认知健康的世界贸易中心救援人员中,将心理韧性与大脑衰老速度相关联,并发现高韧性个体大脑衰老较慢 样本量较小(N=97),且仅针对特定人群(WTC救援人员) 研究心理韧性是否对大脑衰老速度具有保护作用 参与世界贸易中心救援工作的认知健康人员 神经科学 精神健康障碍 结构磁共振成像(MRI) 深度学习算法(BrainStructureAges) MRI图像数据 97名WTC救援人员(分为3组:PTSD组32人,高韧性组34人,低暴露对照组31人)
210 2025-06-12
Annotating the microbial dark matter with HiFi-NN
2025-Jun-20, iScience IF:4.6Q1
research paper 本文介绍了一种名为HiFi-NN的计算方法,用于更精确地注释蛋白质序列的酶功能 HiFi-NN方法在酶委员会(EC)编号的第4级注释上比现有深度学习方法具有更高的精确度和召回率,并且能够在比BLASTp更低的序列相似性下正确识别EC编号 NA 提高蛋白质序列酶功能注释的准确性 蛋白质序列 bioinformatics NA HiFi-NN (Hierarchically-Finetuned Nearest Neighbor search) NN (Nearest Neighbor) protein sequences NA
211 2025-06-12
Atom Identification in Bilayer Moiré Materials with Gomb-Net
2025-Jun-11, Nano letters IF:9.6Q1
research paper 该文章提出了一种名为Gomb-Net的深度学习方法,用于识别双层扭曲异质结构中各层原子的位置和种类,从而解析莫尔图案 开发了Gomb-Net模型,能够识别双层扭曲异质结构中各层原子的位置和种类,解决了莫尔图案带来的复杂性 NA 开发一种方法以识别双层扭曲异质结构中各层原子的位置和种类 双层扭曲异质结构中的原子位置和种类 machine learning NA scanning transmission electron microscopy Gomb-Net image NA
212 2025-06-12
Implicit neural representation for medical image reconstruction
2025-Jun-11, Physics in medicine and biology IF:3.3Q1
综述 本文全面回顾了基于隐式神经表示(INR)的医学图像重建技术,强调了其对领域的日益增长的影响 INR通过将底层信号建模为空间坐标的函数,提供了灵活且连续的图像表示,能够比传统离散方法更有效地捕捉精细细节和复杂结构 需要讨论INR在医学图像重建中的优势和局限性,以及未来研究方向 探讨INR在医学图像重建中的应用及其潜力 医学图像重建技术 数字病理 NA 隐式神经表示(INR) NA 图像 NA
213 2025-06-12
Predicting survival rates of critically ill septic patients with heart failure using interpretable machine learning models
2025-Jun-11, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
research paper 开发了一个可解释的预测模型,用于预测患有心力衰竭的脓毒症危重患者的生存率 首次为心力衰竭合并脓毒症的危重患者开发了一个可解释的生存率预测模型,并采用了SHAP方法解释模型 研究依赖于MIMIC数据库的数据,可能存在数据偏差 预测心力衰竭合并脓毒症危重患者的28天生存率 心力衰竭合并脓毒症的危重患者 machine learning cardiovascular disease Deep Learning Survival (DeepSurv), SHAP DeepSurv clinical data 11,778名患者
214 2025-06-12
Time-Gated Raman Spectroscopy Combined with Deep Learning for Rapid, Label-Free Histopathological Discrimination of Gastric Cancer
2025-Jun-11, Analytical chemistry IF:6.7Q1
研究论文 结合时间门控拉曼光谱与深度学习技术,实现胃癌组织的快速、无标记病理鉴别 首次将时间门控拉曼光谱技术与深度学习结合用于胃癌诊断,有效抑制自发荧光并提升拉曼信号质量 未提及样本来源多样性及模型在外部验证集上的表现 开发分子水平、数字化且智能化的实时胃癌诊断方法 胃癌组织样本 数字病理学 胃癌 时间门控拉曼光谱(TG-Raman) CNN 光谱数据 NA
215 2025-06-12
Deep learning neural network prediction of postoperative complications in patients undergoing laparoscopic right hemicolectomy with or without CME and CVL for colon cancer: insights from SICE (Società Italiana di Chirurgia Endoscopica) CoDIG data
2025-Jun-11, Techniques in coloproctology IF:2.7Q1
research paper 本研究评估了深度学习神经网络(DLNN)在预测结肠癌腹腔镜右半结肠切除术后并发症中的应用 首次将DLNN模型应用于预测结肠癌手术后的并发症,并展示了其优于其他机器学习模型的性能 需要外部验证以进一步优化模型在不同临床环境中的应用 预测结肠癌腹腔镜右半结肠切除术后的并发症,以改善患者安全和资源分配 接受腹腔镜右半结肠切除术的结肠癌患者 machine learning colon cancer deep learning neural networks (DLNN), decision trees (DT), random forest (RF), synthetic minority over-sampling technique (SMOTE) DLNN, DT, RF demographic, clinical, and surgical factors 来自CoDIG多中心数据库的患者数据
216 2025-06-12
Advancing the development of deep learning and machine learning models for oral drugs through diverse descriptor classes: a focus on pharmacokinetic parameters (Vdss and PPB)
2025-Jun-11, Molecular diversity IF:3.9Q2
研究论文 本研究开发了一种用于预测药代动力学参数(Vdss和PPB)的深度学习和机器学习模型 利用Boruta算法进行特征工程,显著提高了模型准确性,并首次使用Stacking分类器预测Vdss和PPB 研究仅针对FDA批准的口服药物,可能不适用于其他给药途径的药物 开发预测药代动力学参数的深度学习和机器学习模型 FDA批准的口服药物及其药代动力学参数(Vdss和PPB) 机器学习 NA 深度学习和机器学习算法 梯度提升(GB)、Stacking分类器、随机森林 分子描述符数据 FDA批准的口服药物数据集,包含超过67种描述符
217 2025-06-12
Continual learning across population cohorts with distribution shift: insights from multi-cohort metabolic syndrome identification
2025-Jun-11, Journal of the American Medical Informatics Association : JAMIA IF:4.7Q1
研究论文 本研究探讨了在真实医疗环境中应用深度学习模型时,由于医院与非医院环境间的分布偏移导致的灾难性遗忘问题,并展示了持续学习在代谢综合征识别中的潜力 提出了一个结合持续学习策略的鲁棒代谢综合征识别流程,有效缓解灾难性遗忘并在分布偏移下保持高预测性能 研究仅基于三个医疗数据集,可能需要更多样化的数据验证方法的普适性 解决深度学习模型在真实医疗环境部署中因分布偏移导致的灾难性遗忘问题 代谢综合征(MetS)患者 机器学习 代谢综合征 深度学习 持续学习(CL)模型 医疗数据 三个医疗数据集(MIMIC、NHANES和一个专有数据集)
218 2025-06-12
IoT-Driven Skin Cancer Detection: Active Learning and Hyperparameter Optimization for Enhanced Accuracy
2025-Jun-10, IEEE journal of biomedical and health informatics IF:6.7Q1
research paper 提出了一种结合主动学习和深度强化学习的创新框架,用于提高皮肤癌检测的准确性 结合深度强化学习(DRL)和新型范围损失函数,动态选择样本并优化分类,减少对大量标记数据的依赖 需要进一步验证在其他数据集上的泛化能力 提高皮肤癌早期检测的准确性和效率 皮肤癌病变图像 computer vision skin cancer deep learning, active learning, deep reinforcement learning CNN, DRL image ISIC和HAM10000数据集中的图像
219 2025-06-12
Deep-learning-based Partial Volume Correction in 99mTc-TRODAT-1 SPECT for Parkinson's Disease: A Preliminary Study on Clinical Translation
2025-Jun-10, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于深度学习的部分体积校正方法,用于改善帕金森病Tc-TRODAT-1 SPECT图像的清晰度和量化准确性 使用基于注意力的条件生成对抗网络(Att-cGAN)进行部分体积校正,无需解剖先验和分割 初步研究,临床数据量有限(100例回顾性数据),且缺乏临床金标准验证 开发适用于帕金森病SPECT成像的深度学习部分体积校正方法 帕金森病患者的Tc-TRODAT-1 SPECT图像 医学影像分析 帕金森病 SPECT成像,蒙特卡洛模拟(SIMIND),有序子集期望最大化算法 Att-cGAN, cGAN, U-Net 医学影像(SPECT) 454个数字脑模型(训练320,验证44,测试90) + 100例临床数据
220 2025-06-12
A Deep Learning Model for Identifying the Risk of Mesenteric Malperfusion in Acute Aortic Dissection Using Initial Diagnostic Data: Algorithm Development and Validation
2025-Jun-10, Journal of medical Internet research IF:5.8Q1
研究论文 开发并验证了一种基于深度学习的模型,用于识别急性主动脉夹层患者中肠系膜灌注不良的高风险 首次整合多模态数据(实验室参数和CT血管造影图像)开发深度学习模型,用于早期识别急性主动脉夹层患者中肠系膜灌注不良的高风险 需要进一步的前瞻性验证以确认其临床实用性 开发一种能够早期识别急性主动脉夹层患者中肠系膜灌注不良高风险的深度学习模型 525名急性主动脉夹层患者 数字病理学 心血管疾病 CT血管造影 深度学习模型 图像和临床数据 525名患者(450名来自北京安贞医院,75名来自南京鼓楼医院)
回到顶部