深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24162 篇文献,本页显示第 22001 - 22020 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
22001 2024-08-05
An AI healthcare ecosystem framework for Covid-19 detection and forecasting using CronaSona
2024-Jul, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文旨在建立一个用于COVID-19检测和预测的医疗生态系统框架CronaSona 创新在于创建一个全面的医疗生态系统框架,解决COVID-19诊断和更广泛健康挑战 NA 介绍一种新型框架,简化针对疾病的应用程序开发和构建 开发CronaSona应用程序以验证并测试框架的功能 数字病理学 新冠肺炎 深度学习 NA 胸部X光图像 NA
22002 2024-08-05
Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing
2024-Jun-27, Network (Bristol, England)
研究论文 本文提出了一种基于混合深度学习的负载平衡算法 创新点在于结合多种因素进行负载平衡和故障容忍的深度学习算法 未提及具体的限制因素 研究云计算中的负载平衡和故障容忍机制 研究对象为多个虚拟机(VM)的任务分配 计算机视觉 NA 深度学习 Deep Q Recurrent Neural Network (DQRNN) 负载、容量、资源消耗数据 未提及样本数量
22003 2024-08-05
A flexible, stretchable and wearable strain sensor based on physical eutectogels for deep learning-assisted motion identification
2024-Jun-27, Journal of materials chemistry. B
研究论文 本文介绍了一种基于物理共晶胶的新型可穿戴应变传感器 通过在深共晶溶剂中直接溶解木质素,制备出具有优良性能的物理共晶胶,创新性地结合深度学习技术实现手势识别 尽管改善了机械性能和导电性,但仍可能存在材料的长期耐用性和在极端条件下的表现未知 探索新型物理共晶胶的应用于可穿戴电子设备的可能性 采用木质素增强的物理共晶胶作为应变传感器材料 数字病理学 NA 深共晶溶剂(DES) 深度学习 NA NA
22004 2024-08-05
High-accuracy heart rate detection using multispectral IPPG technology combined with a deep learning algorithm
2024-Jun-27, Journal of biophotonics IF:2.0Q3
研究论文 本文提出了一种基于多光谱视频的人体心率检测方法 创新点在于结合多光谱成像和IPPG技术,在运动状态下实现高精度心率检测 NA 改善传统心率检测技术的精准度和实时性 多光谱视频数据集中的心率数据 计算机视觉 NA IPPG技术 IPPGResNet18 视频 NA
22005 2024-08-05
Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications
2024-Jun-27, Nanoscale IF:5.8Q1
review 本综述探讨了磁性粒子成像(MPI)的基本原理、仪器、磁性纳米粒子示踪剂设计及其应用 新型示踪剂设计如锌掺杂铁氧体纳米粒子(Zn-IONPs)和超铁磁铁氧化物纳米粒子链(SFMIOs)提高了MPI的成像质量和临床应用 NA 阐明磁性粒子成像(MPI)的进展及其在医学成像中的应用潜力 磁性纳米粒子和其作为示踪剂在成像中的应用 医学成像 NA 磁性粒子成像(MPI) NA 成像 NA
22006 2024-08-05
A Multimodel-Based Screening Framework for C-19 Using Deep Learning-Inspired Data Fusion
2024-Jun-26, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于深度学习的数据融合的多模型筛查框架,用于COVID-19的检测。 创新点在于提出了一种多模态数据融合模型,并引入了变异编码器和数据减少机制以提高筛查结果的准确性。 现有模型在资源要求方面不足,且不适合轻量化环境。 研究目标是提升COVID-19的远程筛查和监测效率。 研究对象为利用可穿戴传感器和电子记录数据进行COVID-19筛查的框架。 数字病理学 COVID-19 深度学习启发的数据融合 多模态融合模型 电子记录和可穿戴传感器数据 实验室数据集,样本数量未说明
22007 2024-08-05
An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology
2024-Jun-25, BMC medical imaging IF:2.9Q2
研究论文 本文提出了一种基于U-net的深度学习方法的自动化体外伤口愈合显微图像分析方法 创新性地采用三种不同结构的U-net架构来提高伤口愈合图像分割的敏感性 未提及具体的限制因素 旨在提高体外伤口愈合图像分析的准确性和效率 体外伤口愈合显微图像 计算机视觉 NA 深度学习 U-net, U-net++, Attention U-net 图像 使用了两个独立的数据集
22008 2024-08-05
Temporal dynamics of user activities: deep learning strategies and mathematical modeling for long-term and short-term profiling
2024-Jun-24, Scientific reports IF:3.8Q1
研究论文 该论文探讨了社交媒体用户的个人特点分析方法 提出了一种结合深度学习策略和数学建模来描述用户长期和短期画像的新方法 模型的有效性可能依赖于特定类型的社交媒体数据 构建一个能够描述用户行为的协作模型 社交媒体用户及其活动 机器学习 NA 双向LSTM和GRU NA 文本 30,000条推文
22009 2024-08-05
Tongue image fusion and analysis of thermal and visible images in diabetes mellitus using machine learning techniques
2024-06-24, Scientific reports IF:3.8Q1
研究论文 本研究旨在通过机器学习技术对糖尿病患者的热成像和可见成像舌头图像进行融合与分析 提出使用离散小波变换(DWT)的多种融合规则来分类糖尿病和正常受试者,并应用深度学习和机器学习算法进行健康与糖尿病的区分 研究未提及样本的多样性和长期跟踪观察的不足 评估融合的舌头图像在糖尿病筛查中的应用 包含80名正常受试者和80名糖尿病患者的参与者 机器学习 糖尿病 数字单镜头参考相机和热红外相机 VGG16和ResNet50 图像 160个样本,包括80名正常受试者和80名糖尿病患者
22010 2024-08-05
3D residual attention hierarchical fusion for real-time detection of the prostate capsule
2024-Jun-24, BMC medical imaging IF:2.9Q2
研究论文 该文章提出了一种深度学习方法,用于实时检测前列腺囊膜。 提出了一种基于3D残差注意力机制的改进单次多框检测器模型,并使用了Simple, Parameter-Free Attention Module(SimAM)残差注意力融合模块。 NA 开发一种用于内窥镜光学图像检测前列腺囊膜的深度学习方法。 前列腺囊膜的检测。 计算机视觉 前列腺癌 深度学习 3D残差注意力机制 内窥镜光学图像 NA
22011 2024-08-05
PET/CT deep learning prognosis for treatment decision support in esophageal squamous cell carcinoma
2024-Jun-24, Insights into imaging IF:4.1Q1
研究论文 本研究提出了一种基于PET/CT图像的深度学习方法,以改善食管鳞状细胞癌患者的生存益处和临床管理 提出了一个整合六个网络的预治疗PET/CT深度学习模型ESCCPro,用于提高食管鳞状细胞癌患者的生存预测准确性 该研究为回顾性多中心研究,可能存在选择偏倚,且未考虑所有潜在的临床变量 改善食管鳞状细胞癌患者的生存益处和临床决策 837名来自三个机构的食管鳞状细胞癌患者 数字病理学 食管癌 PET/CT深度学习 集成模型(ESCCPro) 图像 837名食管鳞状细胞癌患者
22012 2024-08-05
CMCS: contrastive-metric learning via vector-level sampling and augmentation for code search
2024-Jun-24, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于向量级采样和增强的对比度度量学习CMCS用于代码搜索 创新性地提出了一种结合K均值算法的硬负样本采样方法和可控硬度样本增强的方法 未提到具体的局限性 研究目的在于提高代码搜索模型的训练效率和搜索性能 研究对象为代码搜索模型 计算机视觉 NA 深度学习 NA 代码数据 使用了大规模数据集CodeSearchNet的七个先进代码搜索模型进行实验
22013 2024-08-05
Associations of street-view greenspace with Parkinson's disease hospitalizations in an open cohort of elderly US Medicare beneficiaries
2024-Jun, Environment international IF:10.3Q1
研究论文 该研究评估了街景绿色空间与帕金森病住院的关联。 首次使用街景图像与深度学习算法评估绿色空间特征对帕金森病住院的影响。 研究主要集中在美国的特定区域,结果可能不具普遍性。 评估街景绿色空间对帕金森病住院的影响。 大约4560万名65岁及以上的美国医疗保险受益者。 数字病理学 帕金森病 深度学习 Cox等价重参数化Poisson模型 图像 506,899次首例帕金森病相关住院,随访时间为254,917,192人年
22014 2024-08-05
Detecting QT prolongation from a single-lead ECG with deep learning
2024-Jun, PLOS digital health
研究论文 该文章开发了一种深度学习模型,能够从单导联心电图中推断QT间期并检测QT延长。 提出了一种名为QTNet的深度神经网络,能够通过Lead-I心电图推断QT间期,并有效检测药物诱发的QT延长。 模型依赖于高质量的心电图数据,同时在特定人群和临床环境中评估,其适用性可能受到限制。 旨在实现无住院QT监测,特别是在抗心律失常药物的加载过程中。 研究对象包括来自多个医院的心电图数据及接受Dofetilide治疗的患者。 数字病理 心血管疾病 深度学习 深度神经网络 心电图 超过300万份心电图,涉及653千名患者
22015 2024-08-05
Histological Image-based Ensemble Model to Identify Myenteric Plexitis and Predict Endoscopic Postoperative Recurrence in Crohn's Disease: A Multicentre, Retrospective Study
2024-May-31, Journal of Crohn's & colitis
研究论文 本研究开发并验证了一个深度学习系统,通过自动筛选和识别肌层及肠神经丛的特征来预测克罗恩病的术后复发 首次建立了基于组织学图像特征的可解释性堆叠模型来识别肠神经丛炎的严重程度并预测克罗恩病术后复发 仅基于回顾性研究,且涉及的样本主要来自两个医院,可能存在选择偏倚 旨在开发一种深度学习系统来预测克罗恩病术后复发 回顾性分析了205名接受肠切除手术的患者 数字病理学 克罗恩病 深度学习 堆叠模型 图像 205名患者,包含278张手术标本的全切片图像
22016 2024-08-05
Millennial changes and cooling trends in land surface warm-season temperatures during the Holocene
2024-May-18, Science bulletin IF:18.8Q1
研究论文 本文建立了全球暖季温度模型,通过深度学习神经网络分析土壤和湖泊沉积物细菌的膜脂。 该研究通过深度学习技术建立了新型的季节性温度重建模型,提供了对全新世温度变化的新见解。 本文主要受限于代理和标定模型的稀缺性,这对定量重建千年时间尺度的季节温度造成了显著限制。 研究全新世时期的温度变化及其驱动机制。 研究面向全新世的全球湖泊、泥炭地和黄土剖面。 数字病理学 NA 深度学习神经网络分析 NA 温度重建数据 多个全球湖泊和其他地质剖面样本
22017 2024-08-05
MRI-only based material mass density and relative stopping power estimation via deep learning for proton therapy: a preliminary study
2024-05-15, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的方法,通过MRI图像直接估计材料的质量密度和相对停止功率 研究中首次将深度学习技术应用于MRI治疗规划,从而无需其他成像方式就能直接获取质子放疗所需的质量密度和相对停止功率信息 该研究主要基于体模实验,临床应用效果仍需进一步验证 开发一种有效的方法来通过MRI直接估计质子治疗中的材料质量密度和相对停止功率 研究对象包括不同组织的体模和动物组织体模,如皮肤、肌肉、脂肪及脑和肝脏 数字病理学 NA 深度学习 NA 图像 总共七个组织体模,包括五个组织替代体模和两个动物组织体模
22018 2024-08-05
Deciphering exogenous chemical carcinogenicity through interpretable deep learning: A novel approach for evaluating atmospheric pollutant hazards
2024-03-05, Journal of hazardous materials IF:12.2Q1
研究论文 本研究介绍了一种新颖的可解释深度学习模型CarcGC,用于预测化学致癌性 提出了一种新的基于图卷积神经网络的可解释深度学习模型,具有更好的性能和可解释性 深度学习模型可能仍需进一步优化以提高性能和解释性 评估空气污染物的致癌性并为环境致癌性筛查提供基础 化学致癌性预测的化学物质,尤其是美国环保局的危险空气污染物 机器学习 肺癌 图卷积神经网络(GCN) CarcGC 结构分子图 使用了美国环保局的危险空气污染物清单中的化学物质
22019 2024-08-05
An Innovative Inducer of Platelet Production, Isochlorogenic Acid A, Is Uncovered through the Application of Deep Neural Networks
2024-Feb-23, Biomolecules IF:4.8Q1
研究论文 该文章利用深层神经网络发现了一种创新的血小板生成诱导剂异氯原酸A。 文章创新地使用混合CNN+DNN模型,成功识别出异氯原酸A作为治疗放射诱导性血小板减少症的新药物。 文章未提及具体的样本数量和临床数据验证,限制了结果的外推性。 探讨治疗放射诱导性血小板减少症的新药物。 主要研究对象为能够治疗放射诱导性血小板减少症的化合物,特别是异氯原酸A。 机器学习 NA 深度学习 混合神经网络(CNN+DNN) 药物活性数据 10种FDA认可的药物
22020 2024-08-05
Prior-Guided Attribution of Deep Neural Networks for Obstetrics and Gynecology
2024-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种名为Prior-Guided Attribution (PGA)的新方法,用于提高深度神经网络在妇产科超声成像任务中的表现 创新点在于利用空间先验信息引导深度神经网络的归因过程,同时引入了一种新的先验分配策略以处理多个空间先验 需要额外的信息仅在训练过程中使用,推断时不需要,但对于隐私的保护可能仍然存在一些限制 旨在解决妇产科领域深度学习在超声图像任务中的数据不足问题 研究对象为妇产科超声成像中的乳腺癌检测和扫描平面检测任务 计算机视觉 乳腺癌 深度神经网络 NA 超声图像 NA
回到顶部