本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22101 | 2024-08-05 |
Automated measurement and grading of knee cartilage thickness: a deep learning-based approach
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1337993
PMID:38487024
|
研究论文 | 本研究提出了一种基于深度学习的方法来自动测量和分级膝盖软骨厚度 | 通过不同的深度学习方法实现膝盖软骨的分割和测量,建立了一套标准化的软骨厚度数据库 | 研究主要是回顾性分析,可能存在选择偏差,且样本范围在年龄和分级上有限 | 旨在提高膝盖软骨厚度测量的效率和准确性 | 混合膝盖MRI数据集和不同参数下的软骨厚度 | 数字病理学 | 骨关节炎 | 深度学习 | 卷积神经网络(CNN) | 影像 | 700个膝盖MRI案例 |
22102 | 2024-08-05 |
Deep Learning Based Prediction of Pulmonary Hypertension in Newborns Using Echocardiograms
2024, International journal of computer vision
IF:11.6Q1
DOI:10.1007/s11263-024-01996-x
PMID:38911323
|
研究论文 | 本研究提出了一种基于多视角视频的深度学习方法,用于预测和分类新生儿的肺动脉高压。 | 这是首个利用超声心动图进行新生儿肺动脉高压自动评估的研究,采用了解释性深度学习方法。 | 本研究的结果基于相对小的样本量,未来需要在更大人群中验证。 | 本研究旨在开发一种自动化工具,以改善新生儿肺动脉高压的检测和严重性分类。 | 研究对象为270名新生儿,使用超声心动图进行肺动脉高压的预测和评估。 | 数字病理学 | 心脏病 | 超声心动图(Echocardiogram) | 时空卷积网络(Spatio-temporal convolutional architectures) | 视频 | 270名新生儿 |
22103 | 2024-08-05 |
RelCurator: a text mining-based curation system for extracting gene-phenotype relationships specific to neurodegenerative disorders
2023-08, Genes & genomics
IF:1.6Q3
DOI:10.1007/s13258-023-01405-6
PMID:37300788
|
研究论文 | 该文章提出了一个文本挖掘基础的Curator系统,旨在提取与神经退行性疾病相关的基因-表型关系的句子 | 本研究的创新点在于使用双向门控递归单元网络和BioWordVec词嵌入,开发了一种深度学习模型来预测基因-表型关系 | 未提及特定限制 | 旨在从医学文献中提取基因-表型关系,以支持精准医学 | 研究对象为与神经退行性疾病相关的基因和表型实体 | 自然语言处理 | 神经退行性疾病 | 深度学习 | 双向门控递归单元网络 (BiGRU) | 文本 | 超过130,000个标记的PubMed句子 |
22104 | 2024-08-07 |
Design and Rationale for the Use of Magnetic Resonance Imaging Biomarkers to Predict Diabetes After Acute Pancreatitis in the Diabetes RElated to Acute Pancreatitis and Its Mechanisms Study: From the Type 1 Diabetes in Acute Pancreatitis Consortium
2022-07-01, Pancreas
IF:1.7Q3
DOI:10.1097/MPA.0000000000002080
PMID:36206463
|
研究论文 | 本研究探讨使用磁共振成像(MRI)技术预测急性胰腺炎后糖尿病的可能性 | 利用高级MRI技术反映潜在的病理生理变化,并提供预测糖尿病的影像生物标志物 | NA | 通过识别急性胰腺炎后的实质特征,区分高风险个体与血糖正常者 | 急性胰腺炎后糖尿病的风险评估 | 医学影像 | 糖尿病 | 磁共振成像(MRI) | 深度学习 | 影像数据 | DREAM研究中的一部分参与者将参与并接受特定的MRI检查 |
22105 | 2024-08-07 |
Weakly Supervised Skull Stripping of Magnetic Resonance Imaging of Brain Tumor Patients
2022, Frontiers in neuroimaging
DOI:10.3389/fnimg.2022.832512
PMID:37555156
|
研究论文 | 评估Dense-Vnet在脑肿瘤患者MRI数据上进行颅骨剥离的表现 | 采用弱监督深度学习方法在存在病理情况下成功进行MRI脑提取 | 模型在健康患者数据上的表现略低于专门训练的健康患者模型 | 研究脑肿瘤患者MRI数据的颅骨剥离技术 | 脑肿瘤患者的MRI数据 | 计算机视觉 | 脑肿瘤 | MRI | Dense-Vnet | 图像 | 668名脑肿瘤患者的预治疗MRI数据 |
22106 | 2024-08-05 |
Improved 3D DESS MR neurography of the lumbosacral plexus with deep learning and geometric image combination reconstruction
2024-Aug, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-024-04613-7
PMID:38386108
|
研究论文 | 本研究评估了深度学习重建对LSP MRN影像质量和神经可见性的影响 | 提出了一种几何图像组合方法,以改善DESS信号的组合 | 仅评估了成人患者的影像,样本量相对较小 | 探讨深度学习重建及几何图像组合对LSP MRN的影像质量提升 | 涉及40名接受3.0特斯拉LSP MRN的成人患者 | 数字病理学 | NA | 深度学习重建,几何图像组合 | NA | 影像 | 40名患者(22名女性,平均年龄48.6岁) |
22107 | 2024-08-05 |
Computed tomography machine learning classifier correlates with mortality in interstitial lung disease
2024-Jul, Respiratory investigation
IF:2.4Q2
DOI:10.1016/j.resinv.2024.05.010
PMID:38772191
|
研究论文 | 本研究探讨了机器学习分类器Fibresolve在间质性肺病中的死亡率预测能力。 | Fibresolve作为一种基于深度学习的非侵入性诊断工具,首次被验证为间质性肺病死亡率的独立预测因子。 | 此研究的样本量虽然大,但仅包括228名可随访数据的患者,可能限制了结果的广泛适用性。 | 研究Fibresolve在间质性肺病患者中预测死亡率的有效性。 | 研究对象为228名患有特发性肺纤维化及其他间质性肺病的患者。 | 计算机视觉 | 间质性肺病 | 深度学习 | Cox回归分析 | 医学影像 | 228名患者 |
22108 | 2024-08-05 |
From 2D to 3D: automatic measurement of the Cobb angle in adolescent idiopathic scoliosis with the weight-bearing 3D imaging
2024-Jul, The spine journal : official journal of the North American Spine Society
DOI:10.1016/j.spinee.2024.03.019
PMID:38583576
|
研究论文 | 本研究比较了传统2D Cobb角测量和利用重负荷3D成像技术的自动测量在青少年特发性脊柱侧弯患者中的应用 | 提出了使用重负荷3D成像技术的自动测量方法,提供了更精准的脊柱曲度评估 | 需要更多涉及重度曲线患者的研究来验证和扩展这些结果 | 旨在改善青少年特发性脊柱侧弯的临床评估准确性 | 53名被诊断为青少年特发性脊柱侧弯的患者 | 数字病理学 | 青少年特发性脊柱侧弯 | WR3D成像技术 | 3D-UNet | 图像 | 53名患者,88条脊柱曲线 |
22109 | 2024-08-05 |
Comparative analysis of machine learning methods for prediction of chlorophyll-a in a river with different hydrology characteristics: A case study in Fuchun River, China
2024-Jul, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2024.121386
PMID:38865920
|
研究论文 | 本研究分析了不同水文特征河流中氯ophyll-a浓度的预测方法 | 首次比较了传统机器学习和深度学习模型在不同水文特征下的氯ophyll-a预测性能 | 未涉及其他可能影响氯ophyll-a的环境因素 | 探究氯ophyll-a的时空分布及其准确预测对水系统管理的重要性 | 富春江中的氯ophyll-a浓度及其关联环境因子 | 机器学习 | NA | 机器学习 | 传统机器学习模型及深度学习模型 | 环境数据 | NA |
22110 | 2024-08-05 |
Discovery of a Novel and Potent LCK Inhibitor for Leukemia Treatment via Deep Learning and Molecular Docking
2024-Jun-24, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00151
PMID:38847742
|
研究论文 | 本研究介绍了一种新颖且有效的LCK抑制剂,用于白血病治疗 | 结合传统方法与AI驱动的筛选策略,以高效识别LCK抑制剂 | NA | 寻找有效的LCK抑制剂以治疗T细胞急性淋巴细胞白血病 | LCK抑制剂的筛选及其对T-ALL细胞的影响 | 计算机视觉 | 白血病 | 深度学习,分子对接 | PLANET算法 | 化合物数据 | 四种潜在LCK抑制剂,特定化合物1232030-35-1的生物评估 |
22111 | 2024-08-05 |
Saliency-driven explainable deep learning in medical imaging: bridging visual explainability and statistical quantitative analysis
2024-Jun-22, BioData mining
IF:4.0Q1
DOI:10.1186/s13040-024-00370-4
PMID:38909228
|
研究论文 | 本文提出了一种基于图像的显著性框架,以增强深度学习模型在医学图像分析中的可解释性 | 创新性地结合了定性和定量评估,以提高医学成像中深度学习模型的透明度和信任度 | 需要进一步改进经验指标的稳定性和可靠性,并增加多样化的成像模式 | 研究深度学习模型在医学图像分析中的可解释性 | 脑肿瘤MRI和COVID-19胸部X光数据集的预测 | 数字病理 | NA | 深度卷积神经网络 | NA | 图像 | NA |
22112 | 2024-08-05 |
Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas
2024-Jun-21, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.mp.2024-0017
PMID:38910138
|
研究论文 | 本文比较了使用深度学习图像重建的薄层脂肪抑制单次T2加权成像与传统快速自旋回波T2加权成像在评估胰腺中的应用 | 引入了薄层脂肪抑制单次T2加权成像与深度学习图像重建组合进行胰腺评估的创新方法 | 限于回顾性研究,样本量较小,仅包含胰腺癌患者 | 评估新的MRI成像协议在胰腺疾病中的效果 | 42名患有胰腺癌的患者 | 数字病理学 | 胰腺癌 | MRI | 深度学习图像重建 | 图像 | 42名胰腺癌患者 |
22113 | 2024-08-05 |
Quantum error-correction using humming sparrow optimization based self-adaptive deep cnn noise correction module
2024-Jun-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-65182-2
PMID:38906948
|
研究论文 | 该研究提出了一种基于Humming Sparrow优化的自适应深度CNN噪声校正模块,用于改进重六角量子码的错误纠正模型 | 研究中提出的HSO-based SADCNN模型能够针对超导量子比特的独特挑战进行自适应优化,显著提高了错误纠正能力 | 研究可能没有详细讨论在不同噪声环境中的表现或其他类型量子代码的适用性 | 提高重六角量子码在量子计算应用中的可靠性和错误纠正性能 | 针对重六角量子码的错误纠正模型进行研究和改进 | 量子计算 | NA | 深度学习 | 深度CNN | NA | NA |
22114 | 2024-08-05 |
Exploration on OCT biomarker candidate related to macular edema caused by diabetic retinopathy and retinal vein occlusion in SD-OCT images
2024-06-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-63144-2
PMID:38906954
|
研究论文 | 本文探讨了与糖尿病视网膜病变和视网膜静脉阻塞引起的黄斑水肿相关的生物标志物候选者 | 使用深度学习技术发现了与视网膜外层失调和高反射灶特征相关的新生物标志物 | 未提及具体的研究局限 | 提高对糖尿病视网膜病变和视网膜静脉阻塞导致的黄斑水肿潜在病理机制的理解 | 收集了不同类型视网膜病变患者的光学相干断层扫描图像 | 数字病理学 | 糖尿病视网膜病变 | 深度学习 | NA | 图像 | 共收集了120只眼睛的116名受试者和其他类型的患者样本 |
22115 | 2024-08-05 |
Distinct brain morphometry patterns revealed by deep learning improve prediction of post-stroke aphasia severity
2024-Jun-12, Communications medicine
IF:5.4Q1
DOI:10.1038/s43856-024-00541-8
PMID:38866977
|
研究论文 | 本研究揭示了深度学习在预测卒中后失语症严重程度方面的能力 | 使用卷积神经网络(CNN)分析整个大脑形态学,并揭示了不同的三维网络分布与失语症严重程度的直接关联 | 未提及具体的局限性 | 旨在探索大脑形态学及其空间分布对卒中后失语症严重程度的影响 | 231名慢性卒中患者,具有不同失语症严重程度 | 计算机视觉 | 卒中后失语症 | 卷积神经网络(CNN) | CNN | 形态学数据 | 231名患者 |
22116 | 2024-08-05 |
Enhancing SNR in Chemical Exchange Saturation Transfer imaging: a Deep Learning Approach with a Denoising Convolutional Autoencoder (DCAE-CEST)
2024-Jun-09, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.07.597818
PMID:38895366
|
研究论文 | 本研究开发了一种用于化学交换饱和转移成像的信噪比增强方法 | 利用去噪卷积自编码器(DCAE)进行CEST成像的信噪比增强,并与现有去噪方法进行比较 | 在APT和NOE之间未观察到肿瘤与正常组织之间的显著差异 | 研究化学交换饱和转移成像的信噪比增强技术 | 利用模拟的Z谱和动物肿瘤模型的体内数据进行评估 | 数字病理学 | NA | 去噪卷积自编码器(DCAE) | NA | 图像 | 使用模拟的Z谱和体内数据进行评估 |
22117 | 2024-08-05 |
Visualization for Trust in Machine Learning Revisited: The State of the Field in 2023
2024 May-Jun, IEEE computer graphics and applications
IF:1.7Q3
DOI:10.1109/MCG.2024.3360881
PMID:38294921
|
研究论文 | 该文章回顾了机器学习可解释性和可信度可视化的最新进展 | 提供了542种最新的可视化技术,并讨论了使用可视化提高机器学习模型信任的趋势和挑战 | 主要集中在可视化技术的分类和趋势分析,缺乏具体应用案例的深度讨论 | 研究机器学习中可视化技术的应用及其对模型信任度的影响 | 描述和分类了542种可视化技术 | 信息可视化 | NA | 可视化技术 | NA | 文献数据 | 542种可视化技术 |
22118 | 2024-08-05 |
Prediction of early hematoma expansion of spontaneous intracerebral hemorrhage based on deep learning radiomics features of noncontrast computed tomography
2024-May, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10410-y
PMID:37938384
|
研究论文 | 本研究旨在开发一个基于深度学习和放射组学特征的预测早期血肿扩展的诺莫图模型 | 结合了深度学习特征和放射组学特征的模型显示出良好的预测效率,并提高了自发性脑内出血的分割和语义特征分类的工作效率 | 验证队列的AUC值低于训练队列,可能影响模型的临床应用性能 | 研究旨在预测自发性脑内出血早期血肿扩展的风险 | 纳入561例基础非对比CT的自发性脑内出血病例 | 数字病理学 | 自发性脑内出血 | 深度学习放射组学 | 深度学习模型 | 图像 | 561例自发性脑内出血病例 |
22119 | 2024-08-05 |
Deep learning-based identification of spine growth potential on EOS radiographs
2024-May, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10308-9
PMID:37848772
|
研究论文 | 开发了一种基于深度学习的自动化方法,用于评估脊柱生长潜力 | 首次提出了一种能模仿人类判断过程的深度学习算法来自动确定脊柱生长潜力 | 研究没有提及算法在不同人群或不同疾病状态下的适用性 | 评估脊柱生长潜力,帮助临床医生做出决策 | 3383个EOS案例用于算法训练和测试,440个案例用于临床验证 | 计算机视觉 | 脊柱相关疾病 | 深度学习 | NA | 影像 | 3383个EOS案例以及440个用于临床验证的案例 |
22120 | 2024-08-05 |
A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images
2024-May, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10295-x
PMID:37843574
|
研究论文 | 本文设计了一个基于深度学习的框架,用于自动分割和检测颅内动脉瘤。 | 提出了一种新的基于T1磁共振成像的深度学习分割和检测方法,优于现有的血管造影方法。 | 研究样本相对较少,仅基于159个动脉瘤的回顾性研究,可能影响模型的泛化能力。 | 旨在开发一种自动化的框架来提高颅内动脉瘤的检测准确性。 | 研究对象为136名接受T1影像检查的患者的159个颅内动脉瘤。 | 数字病理学 | NA | 深度学习,卷积神经网络 | 卷积神经网络(CNN) | 图像 | 159个颅内动脉瘤(来自136名患者) |