本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22381 | 2024-08-16 |
Identification and Localization of Endotracheal Tube on Chest Radiographs Using a Cascaded Convolutional Neural Network Approach
2021-08, Journal of digital imaging
IF:2.9Q2
DOI:10.1007/s10278-021-00463-0
PMID:34027589
|
研究论文 | 本研究提出了一系列基于深度学习的算法,用于在胸部X光片上迭代识别和定位气管内管(ETT)相对于隆突的位置 | 采用串联级联卷积神经网络(CNN)方法,通过迭代细化坐标定位和显式图像裁剪,聚焦于关键解剖感兴趣区域,提高了识别和定位ETT的准确性 | NA | 在重症监护室(ICU)环境中,快速准确地评估气管内管(ETT)位置,以防止患者因设备位置不当而导致严重的发病率和死亡率 | 气管内管(ETT)在胸部X光片上的识别和定位 | 计算机视觉 | NA | 卷积神经网络(CNN) | CNN | 图像 | 共16,000名患者(其中8,000名患者带有ETT,8,000名患者不带ETT) |
22382 | 2024-08-16 |
Brain MRI Deep Learning and Bayesian Inference System Augments Radiology Resident Performance
2021-08, Journal of digital imaging
IF:2.9Q2
DOI:10.1007/s10278-021-00470-1
PMID:34131794
|
研究论文 | 研究使用结合卷积神经网络和专家导出的贝叶斯网络的AI系统,通过临床决策支持工具ARIES增强放射科住院医师的脑MRI诊断性能 | 提出了一种结合深度学习和贝叶斯推理的临床决策支持系统,能够显著提高非专家的诊断准确性,接近专科医生的水平 | 研究仅涉及放射科住院医师和学术神经放射科医生,未涉及其他专业背景的医生 | 探讨AI系统作为临床决策支持工具在脑MRI诊断中增强放射科医师性能的效果 | 放射科住院医师和学术神经放射科医生的脑MRI诊断性能 | 计算机视觉 | NA | 卷积神经网络, 贝叶斯网络 | CNN, 贝叶斯网络 | 图像 | 194个测试病例,包括4名放射科住院医师和3名学术神经放射科医生 |
22383 | 2024-08-16 |
An Improved CNN Architecture to Diagnose Skin Cancer in Dermoscopic Images Based on Wildebeest Herd Optimization Algorithm
2021, Computational intelligence and neuroscience
DOI:10.1155/2021/7567870
PMID:34497640
|
研究论文 | 本文介绍了一种基于Wildebeest Herd Optimization算法和Inception卷积神经网络的皮肤癌诊断新方法 | 采用Wildebeest Herd Optimization算法进行特征选择,以减少分析时间复杂度,并结合Inception卷积神经网络提取初始特征 | NA | 提高皮肤癌诊断的准确性 | 皮肤癌的诊断 | 计算机视觉 | 皮肤癌 | Wildebeest Herd Optimization算法 | CNN | 图像 | ISIC-2008皮肤癌数据集 |
22384 | 2024-08-16 |
Predicting fracture outcomes from clinical registry data using artificial intelligence supplemented models for evidence-informed treatment (PRAISE) study protocol
2021, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0257361
PMID:34555069
|
研究论文 | 本研究旨在利用人工智能方法处理非结构化临床注册数据,以描述骨折特征并测试这些信息是否能提高腕部骨折后患者报告的结果测量和临床结果的预测准确性 | 本研究采用多模态深度学习骨折推理系统(DLFRS)处理电子病历信息,以提供关于骨折特征的增强信息 | NA | 研究旨在减少护理变异性并改善患者腕部骨折后的治疗结果 | 成年腕部骨折患者 | 机器学习 | 骨折 | 深度学习 | 多模态深度学习骨折推理系统(DLFRS) | 非结构化数据 | 来自四家维多利亚医院的成年腕部骨折患者 |
22385 | 2024-08-15 |
Simulation- and AI-directed optimization of 4,6-substituted 1,3,5-triazin-2(1H)-ones as inhibitors of human DNA topoisomerase IIα
2024-Dec, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2024.06.037
PMID:39135887
|
研究论文 | 本研究通过分子模拟和人工智能方法优化了4,6-取代的1,3,5-三嗪-2(1H)-酮作为人DNA拓扑异构酶IIα抑制剂的结构 | 本研究结合分子模拟、动态药效团和自由能计算以及Deepfrag软件的深度学习预测,有效指导了分子设计,实现了药物优化 | NA | 进一步开发针对人DNA拓扑异构酶IIα的4,6-取代-1,3,5-三嗪-2(1)-酮类化合物 | 4,6-取代-1,3,5-三嗪-2(1)-酮类化合物及其对人DNA拓扑异构酶IIα的抑制活性 | 药物设计 | NA | 分子模拟, 动态药效团, 自由能计算, STD NMR | 深度学习 | 化合物 | 多种具有双环和单环取代的化合物 |
22386 | 2024-08-15 |
Multi-model assessment of potential natural vegetation to support ecological restoration
2024-Sep, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2024.121934
PMID:39083935
|
研究论文 | 本文评估了多种方法在潜在自然植被(PNV)模拟中的表现,以支持生态恢复 | 首次全面比较了传统统计方法与机器学习、深度学习在PNV模拟中的性能 | 不同模型类型的性能差异较大,且在粗分辨率下对恢复区域的估计可能存在高估 | 探讨不同方法在PNV模拟中的适用性,以优化生态恢复项目 | 潜在自然植被的模拟方法及其在生态恢复中的应用 | 生态学 | NA | 机器学习、深度学习 | 随机森林、XGBoost、人工神经网络、半监督学习 | 空间数据 | 样本大小从10到总样本的80%不等 |
22387 | 2024-08-15 |
Significance of AI-assisted techniques for epiphyte plant monitoring and identification from drone images
2024-Sep, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2024.121996
PMID:39088905
|
研究论文 | 本研究利用AI辅助技术,通过无人机图像增强附生植物的识别和地图绘制 | 本研究首次比较了传统图像分割方法与深度学习模型在附生植物识别中的效果,发现深度学习模型在复杂背景和图像质量变化情况下的识别能力更强 | 研究使用的数据集有限,且图像质量不一,可能影响深度学习模型的性能评估 | 评估AI辅助方法与传统方法在从无人机图像中分割和识别附生植物的有效性 | 附生植物的识别和地图绘制 | 计算机视觉 | NA | 深度学习 | UNet, TransUNet | 图像 | 在哥斯达黎加保护区森林中收集的无人机图像 |
22388 | 2024-08-15 |
The impact of ESG performance on corporate sustainable growth from the perspective of carbon sentiment
2024-Sep, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2024.121913
PMID:39067346
|
研究论文 | 本研究探讨了碳情绪与ESG表现及企业可持续增长之间的关系,通过使用OLS回归分析和面板数据模型,结合BERT和LSTM模型进行文本分析,揭示了碳情绪对ESG表现与企业可持续增长的正向调节作用。 | 本研究首次采用碳情绪分析方法,结合深度学习技术如BERT和LSTM模型,分析碳相关新闻文本,探索其对企业可持续增长的影响。 | 研究主要集中在中国上市公司,且依赖于特定的数据集和模型,可能限制了结果的普遍性。 | 探索碳情绪、ESG表现与企业可持续增长之间的关系,并为绿色经济和环境管理政策的制定提供新的视角。 | 中国上市公司的ESG表现、碳情绪及其对企业可持续增长的影响。 | 自然语言处理 | NA | OLS回归分析、两阶段工具变量法(2SLS)、动态面板广义矩估计(GMM)、BERT、LSTM | BERT、LSTM | 文本 | 中国上市公司 |
22389 | 2024-08-15 |
An integrated deep learning approach for modeling dissolved oxygen concentration at coastal inlets based on hydro-climatic parameters
2024-Sep, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2024.122018
PMID:39111007
|
研究论文 | 本研究提出了一种基于水文气象参数的深度学习神经网络方法,用于模拟和预测埃及拉希德沿海入口处的溶解氧浓度 | 引入了创新的深度学习神经网络方法,显著提高了溶解氧预测的准确性,相较于最佳的传统机器学习方法,预测准确性提高了4% | NA | 开发有效的溶解氧预测模型,以帮助沿海管理部门监测由于气候变化加速导致的溶解氧变化 | 埃及拉希德沿海入口处的溶解氧浓度 | 机器学习 | NA | 深度学习神经网络 | 深度学习神经网络 | 水文气象数据 | NA |
22390 | 2024-08-15 |
Self-normalization for a 1 mm3resolution clinical PET system using deep learning
2024-Aug-14, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad69fb
PMID:39084640
|
研究论文 | 首次提出基于条件生成对抗网络(cGANs)的正电子发射断层扫描(PET)图像端到端自归一化框架 | 开发了极化自注意力(PSA)Pix2Pix网络,并在几何因子校正输入图像上训练的2.5D PSA Pix2Pix显示出最佳性能 | NA | 提高PET图像质量和病变检测能力,无需单独的归一化扫描 | 评估不同方法在PET图像自归一化中的效果 | 计算机视觉 | NA | 条件生成对抗网络(cGANs) | Pix2Pix, 极化自注意力(PSA)Pix2Pix | 图像 | 26,000对轴向图像切片用于训练和测试 |
22391 | 2024-08-15 |
Hierarchical multi-level dynamic hyperparameter deformable image registration with convolutional neural network
2024-Aug-14, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad67a6
PMID:39053510
|
研究论文 | 提出了一种新的动态超参数块,包含分布式映射网络、动态卷积、注意力特征提取层和实例归一化层,以改进深度学习可变形图像配准(DLDIR)中的超参数调整过程 | 引入了动态超参数块和分层多级架构,以提高配准性能和减少训练时间 | 未提及具体限制 | 旨在通过动态超参数选择和改进的网络架构提高图像配准的速度和准确性 | 大脑和肺部图像配准 | 计算机视觉 | NA | 动态卷积 | 卷积神经网络(CNN) | 图像 | 使用了OASIS和DIR-Lab数据集 |
22392 | 2024-08-15 |
Wasserstein generative adversarial network with gradient penalty and convolutional neural network based motor imagery EEG classification
2024-Aug-14, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ad6cf5
PMID:39116892
|
研究论文 | 本文提出了一种新的数据增强方法和深度学习分类模型,以进一步提高运动想象脑电图(MI-EEG)的解码性能 | 提出了一种改进的带有梯度惩罚的Wasserstein生成对抗网络数据增强方法,有效扩展了用于模型训练的数据集,并设计了一个简洁高效的深度学习模型以进一步提高解码性能 | NA | 提高运动想象脑电图数据的解码性能 | 运动想象脑电图数据 | 机器学习 | NA | 连续小波变换 | 卷积神经网络(CNN) | 时间-频率图 | BCI竞赛IV 2a和2b数据集以及实际收集的数据集 |
22393 | 2024-08-15 |
Automated diagnosis of adenoid hypertrophy with lateral cephalogram in children based on multi-scale local attention
2024-08-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-69827-0
PMID:39127777
|
研究论文 | 本文提出了一种基于多尺度局部注意力的方法,用于自动诊断儿童的腺样体肥大 | 本研究设计了一种基于局部注意力的方法,通过融合腺样体的空间和通道信息,提高了诊断的准确性 | NA | 开发一种自动化的、标准化的方法来诊断腺样体肥大 | 儿童的腺样体肥大 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 三个医院的数据集 |
22394 | 2024-08-15 |
UAV propeller fault diagnosis using deep learning of non-traditional χ2-selected Taguchi method-tested Lempel-Ziv complexity and Teager-Kaiser energy features
2024-Aug-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-69462-9
PMID:39127843
|
研究论文 | 本研究探讨了使用非传统特征提取方法(如排列熵、Lempel-Ziv复杂度和Teager-Kaiser能量算子)进行无人机螺旋桨故障诊断的应用 | 本研究采用非传统特征提取方法,并通过χ²特征选择和Taguchi方法测试,提高了故障诊断的准确性 | NA | 提高无人机螺旋桨故障检测和隔离的准确性和效率 | 无人机螺旋桨的故障诊断 | 机器学习 | NA | 深度神经网络 | 深度神经网络 | 数据集 | 包含多种螺旋桨故障配置的PADRE数据集 |
22395 | 2024-08-15 |
Advancing Automatic Gastritis Diagnosis: An Interpretable Multilabel Deep Learning Framework for the Simultaneous Assessment of Multiple Indicators
2024-08, The American journal of pathology
DOI:10.1016/j.ajpath.2024.04.007
PMID:38762117
|
研究论文 | 本文开发了一种基于注意力的多实例多标签学习网络(AMMNet),用于同时诊断活动性、萎缩性和肠上皮化生等胃炎指标,并评估了其在实际应用中的性能。 | AMMNet能够同时诊断多个胃炎指标,并提供可解释的标签,这在之前的深度学习模型中是缺失的。 | NA | 提高胃炎诊断的准确性和效率,并增强模型的可解释性。 | 胃炎的多个形态学指标,包括活动性、萎缩性和肠上皮化生。 | 机器学习 | 胃炎 | 多实例多标签学习 | 注意力网络 | 图像 | 1096名患者 |
22396 | 2024-08-15 |
Deep learning reconstruction for coronary CT angiography in patients with origin anomaly, stent or bypass graft
2024-Aug, La Radiologia medica
DOI:10.1007/s11547-024-01846-3
PMID:39023665
|
研究论文 | 开发并验证了一种深度学习模型,用于自动重建冠状动脉CT血管造影(CCTA),特别是在有起源异常、支架或旁路移植的患者中。 | 该深度学习模型能够准确自动重建CCTA,显著减少了后处理时间并改善了临床工作流程。 | NA | 开发和验证一种深度学习模型,用于自动重建冠状动脉CT血管造影。 | 冠状动脉CT血管造影(CCTA)在有起源异常、支架或旁路移植的患者中的自动重建。 | 计算机视觉 | 心血管疾病 | 深度学习 | 深度学习模型 | 图像 | 训练集包含6063名患者,验证集包含1962名患者,外部测试集包含812名患者。 |
22397 | 2024-08-15 |
Attention 3D U-NET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Direction modulated brachytherapy tandem applicator
2024-Aug, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17238
PMID:38830129
|
研究论文 | 本文开发了一种基于注意力机制的3D U-NET模型,用于预测宫颈癌高剂量率近距离治疗中方向调制近距离治疗(DMBT)的剂量分布。 | 引入了注意力门控机制的3D U-NET模型,提高了剂量预测的准确性,并能在近实时应用中快速预测剂量分布。 | NA | 开发一种高效的深度学习模型,用于宫颈癌高剂量率近距离治疗的剂量预测。 | 宫颈癌患者的剂量分布预测。 | 计算机视觉 | 宫颈癌 | 深度学习 | 3D U-NET | 图像 | 122例回顾性临床高剂量率近距离治疗计划 |
22398 | 2024-08-15 |
Deep learning-based magnetic resonance imaging analysis for chronic cerebral hypoperfusion risk
2024-Aug, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17237
PMID:38820428
|
研究论文 | 本文提出了一种基于深度学习的磁共振成像分析方法,用于提高慢性脑低灌注(CCH)的诊断准确性 | 提出了CCH-Network(CCHNet),一种结合卷积和Transformer模块的端到端深度学习模型,以及一种新颖的对抗训练方法,以提高特征知识捕获能力 | NA | 提高慢性脑低灌注(CCH)的诊断准确性 | 慢性脑低灌注(CCH)的诊断 | 机器学习 | NA | 磁共振成像(MRI) | CNN, Transformer | 图像 | 训练和测试集共204例,验证集108例 |
22399 | 2024-08-15 |
Liver fibrosis automatic diagnosis utilizing dense-fusion attention contrastive learning network
2024-Aug, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17130
PMID:38753547
|
研究论文 | 本文提出了一种基于密集融合注意力对比学习网络的肝纤维化自动诊断方法 | 开发了一种自定义的多视角对比学习网络,用于自动分类多参数DWI图像并探索不同DWI参数之间的协同作用 | 在有限样本的数据集中识别有效的DWI参数并挖掘潜在特征仍是一个挑战 | 开发一种新的深度学习模型,用于自动识别和分类多参数DWI图像,以辅助肝纤维化的诊断 | 肝纤维化及其相关DWI参数 | 计算机视觉 | 肝病 | 扩散加权成像(DWI) | 密集融合注意力对比学习网络(DACLN) | 图像 | 使用了一组真实的临床数据进行模型评估 |
22400 | 2024-08-15 |
Swin MoCo: Improving parotid gland MRI segmentation using contrastive learning
2024-Aug, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17128
PMID:38749016
|
研究论文 | 本文提出了一种基于对比学习的Swin MoCo网络,用于改善腮腺MRI图像的分割效果 | 使用Swin Transformer作为骨干网络,并通过迁移学习初始化权重,提高了对小规模医学图像数据集的训练效果 | NA | 旨在通过对比学习方法改善腮腺肿瘤MRI图像的分割 | 腮腺及其肿瘤的MRI图像分割 | 计算机视觉 | 腮腺肿瘤 | 对比学习 | Swin Transformer | 图像 | NA |