本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22641 | 2024-08-05 |
iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction
2023-05, Nature protocols
IF:13.1Q1
DOI:10.1038/s41596-023-00806-x
PMID:36869216
|
研究论文 | 本文提出了一种针对婴儿大脑皮层重建的深度学习计算管道 | 提出了一种稳健的、多站点适用的婴儿专用计算管道,能够处理婴儿脑MRI数据的多样性和挑战 | 仅基于Baby Connectome Project的数据进行训练,可能无法适应所有类型的婴儿脑MRI数据 | 旨在提高婴儿脑MRI的处理精度和效率 | 多站点和多模态的婴儿脑MRI数据集 | 数字病理学 | NA | 深度学习 | NA | MRI图像 | 处理超过16,000个婴儿MRI扫描 |
22642 | 2024-08-05 |
Using mesoscopic tract-tracing data to guide the estimation of fiber orientation distributions in the mouse brain from diffusion MRI
2023-04-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2023.119999
PMID:36871795
|
research paper | 本研究旨在利用中观轨迹追踪数据改进小鼠脑部扩散MRI的纤维方向分布估计 | 提出了一种利用中观轨迹追踪数据训练深度学习网络的方法,以改善小鼠脑部FODs的估计 | 未提及具体的局限性 | 改善小鼠脑部扩散MRI信号中的纤维方向估计 | 小鼠脑部的纤维方向分布 | 数字病理学 | NA | 扩散MRI | 深度学习网络 | MRI数据 | 使用了来自艾伦小鼠脑连接图谱的中观轨迹追踪数据 |
22643 | 2024-08-05 |
Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry
2023-04, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28365
PMID:35852498
|
研究论文 | 评估深度学习模型在不同数据集上进行自动化评估的泛化能力 | 提出了将预训练的深度学习模型应用于不同MR扫描仪和获取参数的数据集上,以评估其泛化能力 | 深度学习模型的泛化能力依赖于训练数据集的特性,可能在其他类型的病理情况下表现不佳 | 评估深度学习模型在没有微调的情况下对新数据集的适用性 | 59名受试者及其不同的MR扫描数据集 | 数字病理学 | NA | qDESS | NA | MRI图像 | 59名受试者(26名女性),分为四个研究小组 |
22644 | 2024-08-05 |
Cross-scanner harmonization methods for structural MRI may need further work: A comparison study
2023-04-01, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2023.119912
PMID:36731814
|
研究论文 | 该研究评估了多种扫描仪标定方法对脑部MRI影像的一致性影响 | 比较了深度学习、直方图匹配和统计方法在MRI扫描一致性中的应用,提供了未来研究的框架 | 现有方法在长时间数据集上均未能有效和谐处理 | 旨在提高针对不同扫描仪的MRI数据的一致性 | 涉及在GE和西门子扫描仪上扫描的参与者数据 | 数字病理学 | 衰老和癫痫 | 深度学习、直方图匹配和统计方法 | 深度学习模型(如CycleGAN和CGAN) | MRI影像数据 | 涉及共567名参与者,113名为交叉扫描者,454名为纵向扫描者 |
22645 | 2024-08-05 |
The connectome of an insect brain
2023-03-10, Science (New York, N.Y.)
DOI:10.1126/science.add9330
PMID:36893230
|
研究论文 | 本文映射了一个昆虫大脑的突触分辨率连接组,展示了其神经元网络的架构和功能 | 揭示了丰富的神经回路结构特点,如多感官整合和高度重复的电路结构 | 未提及具体的实验验证或应用研究 | 了解昆虫大脑的网络架构与功能 | 研究了一个具有丰富行为的昆虫幼虫大脑 | 数字病理学 | NA | NA | NA | 神经元连接数据 | 3016个神经元和548,000个突触 |
22646 | 2024-08-05 |
DOMINO: Domain-aware loss for deep learning calibration
2023-Mar, Software impacts
IF:1.3Q3
DOI:10.1016/j.simpa.2023.100478
PMID:37091721
|
研究论文 | 本文提出了一种新的领域感知损失函数,用于校准深度学习模型 | 提出了一种基于类之间相似性的分类惩罚的新型损失函数,改进了模型的校准 | 未提及具体的限制 | 研究深度学习模型的校准方法,特别是在医疗影像任务中的应用 | 深度学习模型及其在医疗影像任务中的校准 | 计算机视觉 | NA | 深度学习 | NA | NA | NA |
22647 | 2024-08-05 |
Characterizing browser-based medical imaging AI with serverless edge computing: towards addressing clinical data security constraints
2023-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.2653626
PMID:37063644
|
研究论文 | 本文提出了一种基于浏览器的医学成像人工智能部署系统,以增强临床数据安全性 | 该研究创新性地利用无服务器边缘计算实现隐私保护的医学成像AI应用,避免了常规云计算的隐私风险 | 研究中未明确讨论与其他类型隐私保护模型的比较 | 研究旨在解决医学成像AI应用中的数据隐私问题 | 研究对象为利用CT进行肺癌筛查的3D医学图像分割模型 | 数字病理学 | 肺癌 | 无服务器边缘计算 | 3D卷积神经网络 (CNN) | 医学图像 | NA |
22648 | 2024-08-05 |
Multi-site cross-organ calibrated deep learning (MuSClD): Automated diagnosis of non-melanoma skin cancer
2023-02, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2022.102702
PMID:36516556
|
研究论文 | 本文提出了一种新的深度学习方法MuSClD,用于改善非黑色素瘤皮肤癌的自动诊断。 | 创新点在于利用外部测试机构的非目标器官的全片图像进行校准,来减小训练数据和测试数据之间的领域转移。 | 本研究主要集中在非黑色素瘤皮肤癌的诊断,可能无法直接应用于其他类型的癌症或疾病。 | 研究的目的是提高深度学习分类器在不同测试地点上对非黑色素瘤皮肤癌的通用性。 | 研究对象为基本细胞癌、原位鳞状细胞癌和侵袭性鳞状细胞癌。 | 计算机视觉 | 非黑色素瘤皮肤癌 | 深度学习 | NA | 全片图像 | 训练样本85,测试样本352 |
22649 | 2024-08-05 |
Antibodies as drugs-a Keystone Symposia report
2023-01, Annals of the New York Academy of Sciences
IF:4.1Q1
DOI:10.1111/nyas.14915
PMID:36382536
|
评论 | 本文讨论了抗体作为药物的最新研究进展 | 介绍了抗体治疗的最新方法及其在多种疾病中的应用 | 未提供具体的实验数据或研究样本 | 探讨抗体作为药物的研究前沿 | 关注于抗体的治疗潜力及其工程化 | NA | 肿瘤, 自身免疫疾病, 传染病 | 深度学习 | NA | NA | NA |
22650 | 2024-08-05 |
Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis
2022-Dec, Journal of medical artificial intelligence
DOI:10.21037/jmai-22-36
PMID:36861064
|
系统评价和Meta分析 | 本文章系统评估深度学习在冠状动脉解剖成像中的应用及其准确性. | 本文提供了对深度学习在冠状动脉解剖成像中应用的全面分析,并展示了CNN模型在此领域的强大性能. | 大多数研究的外部验证尚未进行,临床应用准备不足. | 评估深度学习应用于冠状动脉解剖成像的准确性. | 应用深度学习技术进行冠状动脉解剖成像的相关研究. | 医学成像 | 冠状动脉疾病 | 深度学习, 具体为卷积神经网络(CNN) | CNN | 医学影像 | 81项研究符合纳入标准 |
22651 | 2024-08-05 |
A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution
2022-12, Nature neuroscience
IF:21.2Q1
DOI:10.1038/s41593-022-01189-0
PMID:36424431
|
研究论文 | 这篇文章提出了一种深度学习框架,用于从具有亚帧时间分辨率的钙成像中推断单次试验神经群体动态 | 该研究开发了RADICaL方法,以解决利用钙信号推断网络动态中的噪声和时间分辨率限制 | 研究主要集中在合成测试上,实际应用可能面临的挑战未完全探讨 | 研究旨在提高从钙成像中推断神经网络状态的精度 | 使用进行前肢到达任务的小鼠的2p钙成像数据 | 神经科学 | NA | 钙成像 | 递归自编码器 | 钙成像数据 | 小鼠的2p记录数据,样本量未具体描述 |
22652 | 2024-08-05 |
Tagged-MRI Sequence to Audio Synthesis via Self Residual Attention Guided Heterogeneous Translator
2022-Sep, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-16446-0_36
PMID:36820764
|
研究论文 | 该文章提出了一种基于自残差注意力的异构翻译器,从带标记的MRI序列生成音频波形 | 创新点在于采用全卷积不对称翻译器和自残差注意力策略,以处理语音中的肌肉运动结构 | 该研究的局限性在于使用的数据集规模有限 | 研究目标是理解带标记的MRI与可懂语音之间的关系 | 研究对象为带标记的MRI序列和其对应的音频波形 | 计算机视觉 | 言语相关疾病 | 深度学习 | 生成对抗网络 | 图像和音频 | 63个带标记的MRI序列 |
22653 | 2024-08-05 |
Residue-wise local quality estimation for protein models from cryo-EM maps
2022-09, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-022-01574-4
PMID:35953671
|
研究论文 | 本文开发了一种方法,用于评估蛋白质模型中基于冷冻电镜图的残基局部质量。 | 创新点在于提出了一种名为DAQ的评分方法,能够识别蛋白质残基在冷冻电镜图中的潜在错误分配。 | 未提及具体限制 | 研究旨在提高冷冻电镜图中蛋白质残基的分配准确性。 | 研究对象为从冷冻电镜图构建的蛋白质结构模型。 | 数字病理学 | NA | 深度学习 | NA | 冷冻电镜图 | 多个核酸数据库中基于相同密度图构建的蛋白质结构模型 |
22654 | 2024-08-05 |
Multi-scale Multi-structure Siamese Network (MMSNet) for Primary Open-Angle Glaucoma Prediction
2022-Sep, Machine learning in medical imaging. MLMI (Workshop)
DOI:10.1007/978-3-031-21014-3_45
PMID:36656619
|
研究论文 | 本文提出了一种多尺度多结构的Siamese网络(MMSNet),用于预测原发性开角型青光眼。 | 创新点在于MMSNet网络模拟青光眼专家通过比较跟踪的视神经图像和基线图像来进行的预测,且利用多幅图像和深度监督进行预测。 | 本研究可能受到数据集选择的限制,且未考虑更复杂的临床变量。 | 研究旨在提高原发性开角型青光眼的早期预测能力。 | 研究对象为眼压升高治疗研究中的1636名参与者的视网膜照片。 | 数字病理学 | 青光眼 | 深度学习 | Siamese网络 | 图像 | 37339幅视网膜照片 |
22655 | 2024-08-05 |
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
2022-Aug, The journal of machine learning for biomedical imaging
PMID:36998700
|
研究论文 | 本文探讨了脑肿瘤多区段分割中的不确定性量化评分的评估与排名 | 提出了一种新的评分方法用于评估和排名脑肿瘤分割的不确定性估计 | 研究中可能没有完全考虑各种不确定性估计方法的适用性 | 量化深度学习模型预测的不确定性,以促进临床转化 | 针对参与BRAST 2019和2020任务的多个团队的脑肿瘤分割不确定性 | 数字病理学 | 脑肿瘤 | 深度学习 | NA | 医学影像 | 14个独立参与团队 |
22656 | 2024-08-05 |
A deep learning-based method for the diagnosis of vertebral fractures on spine MRI: retrospective training and validation of ResNet
2022-08, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-022-07121-1
PMID:35089420
|
研究论文 | 该文章提出了一种基于深度学习的方法来诊断脊椎MRI上的脊椎骨折 | 应用ResNet50算法开发了决策支持系统,以提高临床医生对脊椎骨折的诊断能力 | 需要考虑脊椎体以外的其他发现,以改善模型,进一步的研究是必要的以将结果推广到实际应用中 | 提高临床医生在MRI上对良性和恶性脊椎骨折的诊断性能 | 190名患者,其中50名有恶性骨折,140名有良性骨折 | 数字病理学 | 脊椎骨折 | 深度学习 | ResNet50 | MRI图像 | 190名患者 |
22657 | 2024-08-05 |
Patient-specific synthetic magnetic resonance imaging generation from cone beam computed tomography for image guidance in liver stereotactic body radiation therapy
2022-Jun, Precision radiation oncology
DOI:10.1002/pro6.1163
PMID:37064765
|
研究论文 | 本文提出了一种患者特异性的深度学习模型,旨在从锥形束计算机断层扫描(CBCT)生成合成磁共振成像(MRI)以改善肝肿瘤定位 | 创新点在于利用患者特异性的CBCT-MRI图像对来训练深度学习模型以生成合成MRI | 由于该研究基于特定患者的数据,模型的泛化能力可能受到限制 | 研究旨在提高肝肿瘤定位的准确性 | 研究对象为肝肿瘤患者的CBCT和MRI图像 | 医学影像处理 | 肝癌 | 深度学习 | U-Net | 影像 | 3名患者的CBCT-Ground Truth MRI图像 |
22658 | 2024-08-05 |
Generalizing deep learning brain segmentation for skull removal and intracranial measurements
2022-05, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2022.01.004
PMID:34999162
|
研究论文 | 本文提出了一种用于脑部分割的深度学习方法,以实现颅骨去除和颅内测量 | 引入了迁移学习方法来估计额外的TICV和PFV标签,并采用U-Net模型进行颅骨去除的全脑分割 | 手动标注全脑体积的可用数据集有限,影响了方法的普适性 | 研究如何实现深度学习脑部分割以进行颅骨去除和颅内测量 | 关注于采用MRI成像技术进行脑体积测量的神经影像数据 | 数字病理学 | NA | MRI | U-Net | 图像 | 使用有限的BrainCOLOR数据集进行训练 |
22659 | 2024-08-05 |
A Deep Learning Approach for Meter-Scale Air Quality Estimation in Urban Environments Using Very High-Spatial-Resolution Satellite Imagery
2022-Apr-27, Atmosphere
IF:2.5Q3
DOI:10.3390/atmos13050696
PMID:37724306
|
研究论文 | 本研究主要关注在城市环境中利用超高分辨率卫星影像生成百米尺度的空气质量图。 | 提出了一种新的基于图像的物体检测分析方法,能够以显著更小的尺度估计空气质量,为城市环境AQ监测提供了新的视角。 | 目前的模型依赖于卫星影像,可能在缺乏地面监测数据的地区难以推广应用。 | 研究目标是开发一种能够在发达城市生成百米尺度空气质量图的模型。 | 研究对象包括伦敦、温哥华、洛杉矶和纽约市的空气质量数据。 | 数字病理学 | NA | 深度神经网络(DNN) | NA | 卫星影像 | 使用了地面监测观察和土地利用回归建模的PM与NO浓度数据 |
22660 | 2024-08-05 |
Rule-Enhanced Active Learning for Semi-Automated Weak Supervision
2022-Mar, Artificial intelligence
IF:5.1Q1
DOI:10.3390/ai3010013
PMID:35845102
|
研究论文 | 本文提出了一种改进的弱监督文本分类框架REGAL,通过对标签函数进行主动学习,降低人工标注负担 | REGAL通过从原始文本中交互式地创建高质量标签模式,允许单个注释者在初始化时只需三个关键词即可准确标注整个数据集,显著提高了标签函数的提取效率 | NA | 提高弱监督文本分类中的主动学习效率,减少人力标注需求 | 文本数据集的标注 | 自然语言处理 | NA | 弱监督学习 | NA | 文本 | 六个常用的自然语言处理基准数据集 |