本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23061 | 2024-08-07 |
The future of artificial intelligence in clinical nutrition
2024-03-01, Current opinion in clinical nutrition and metabolic care
IF:3.0Q2
DOI:10.1097/MCO.0000000000000977
PMID:37650706
|
综述 | 本文综述了人工智能在临床营养领域的应用,探讨了如何利用医疗数据库开发深度学习和机器学习算法,以改善筛查、评估和预测与临床营养相关的临床事件和结果。 | 人工智能已应用于临床营养的各个领域,如改善筛查工具、识别营养不良的癌症患者或肥胖患者,以及在重症监护中预测肠内营养不耐受、腹泻或再喂养低磷血症。 | 使用人工智能时需要考虑伦理问题和局限性。 | 探讨人工智能在临床营养中的应用,支持医疗专业人员的决策过程。 | 临床营养领域的筛查、评估和预测工具。 | 机器学习 | NA | 深度学习 | 机器学习算法 | 数据库 | 大型数据库 |
23062 | 2024-08-07 |
Research on breast cancer pathological image classification method based on wavelet transform and YOLOv8
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230296
PMID:38189740
|
研究论文 | 本文提出了一种基于小波变换和YOLOv8的乳腺癌病理图像分类方法 | 结合深度学习和小波变换技术,提高了乳腺癌病理图像的分类准确性 | NA | 提高乳腺癌病理图像的自动识别和分类准确性 | 乳腺癌病理图像 | 数字病理学 | 乳腺癌 | 小波变换 | YOLOv8 | 图像 | 数据集通过图像翻转技术扩增,训练集和测试集按8:2和7:3划分 |
23063 | 2024-08-07 |
Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230333
PMID:38393883
|
研究论文 | 本研究评估了深度学习图像重建(DLIR)算法在双能谱CT(DEsCT)成像中的性能,特别是在不同辐射剂量和图像能量水平下的表现,并与滤波反投影(FBP)和自适应统计迭代重建-V(ASIR-V)算法进行了比较。 | DLIR算法在低keV图像中提供了更好的噪声控制,并且在所有剂量和能量水平下具有最低的图像噪声和最高的检测能力。 | NA | 评估DLIR算法在双能谱CT成像中的性能,特别是在不同辐射剂量和图像能量水平下的表现。 | ACR464 phantom在不同剂量和能量水平下的虚拟单色图像重建。 | 计算机视觉 | NA | 双能谱CT(DEsCT) | 深度学习图像重建(DLIR) | 图像 | ACR464 phantom在四个剂量水平(3.5 mGy, 5 mGy, 7.5 mGy, 10 mGy)和五个能量水平(40 keV, 50 keV, 68 keV, 74 keV, 140 keV)下的扫描数据。 |
23064 | 2024-08-07 |
Predicting the error magnitude in patient-specific QA during radiotherapy based on ResNet
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230251
PMID:38457139
|
研究论文 | 本研究利用ResNet模型预测放射治疗中特定患者质量保证(QA)过程中的误差幅度 | 首次探讨了深度学习在预测误差幅度方面的可行性 | NA | 旨在预测放射治疗中不同交付误差类型的误差幅度 | 胸部癌症计划的强度调制放射治疗(IMRT) | 机器学习 | 胸部癌症 | ResNet | CNN | 剂量分布 | 34个胸部癌症计划(172个场),其中30个计划用于模型训练和验证,4个计划用于外部测试 |
23065 | 2024-08-07 |
A user-friendly deep learning application for accurate lung cancer diagnosis
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230255
PMID:38607727
|
研究论文 | 本研究开发了一种用户友好的深度学习应用,用于提高肺癌诊断的准确性 | 利用放射组学和深度学习技术,通过U-NET和DenseNet模型进行图像分割和癌症分类,提高了肺癌诊断的效率和准确性 | 3D图像处理可能受器官重叠、畸变和放大等因素的限制,且可能无法检测到新的病理变化 | 开发一种工具,利用放射组学和深度学习技术进行肺癌诊断 | 肺癌患者的CT扫描图像 | 机器学习 | 肺癌 | 放射组学, 深度学习 | U-NET, DenseNet | 图像 | 86名患者来自Bach Mai医院,1012名患者来自开放数据库 |
23066 | 2024-08-07 |
DDA-SSNets: Dual decoder attention-based semantic segmentation networks for COVID-19 infection segmentation and classification using chest X-Ray images
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230421
PMID:38607728
|
研究论文 | 本文提出了一种基于双解码器注意力机制的语义分割网络DDA-SSNets,用于通过胸部X光图像对COVID-19感染进行分割和分类 | 提出了双解码器注意力机制的语义分割网络DDA-SSNets,包括DDA-UNet和DDA-SegNet,以及基于遗传算法的深度卷积神经网络分类器GADCNet,用于提高COVID-19感染的诊断和分期能力 | NA | 开发基于深度学习的模型,用于分类和量化与COVID-19相关的肺部感染 | COVID-19感染的肺部区域和非感染区域 | 计算机视觉 | COVID-19 | 深度学习 | CNN | 图像 | 胸部X光图像中的肺叶和感染区域 |
23067 | 2024-08-07 |
Feature shared multi-decoder network using complementary learning for Photon counting CT ring artifact suppression
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230396
PMID:38669511
|
研究论文 | 本文提出了一种新颖的特征共享多解码器网络(FSMDN),利用互补学习来抑制光子计数CT图像中的环状伪影 | 该网络通过特征共享编码器提取上下文和环状伪影特征,并通过并行的独立解码器进行处理,实现了伪影抑制和组织细节保留 | NA | 旨在全面解决光子计数CT图像中环状伪影的问题 | 光子计数CT图像中的环状伪影 | 计算机视觉 | NA | 深度学习 | 特征共享多解码器网络(FSMDN) | 图像 | 涉及具有三种强度环状伪影的光子计数CT图像的多次实验 |
23068 | 2024-08-07 |
Development and Application of Traditional Chinese Medicine Using AI Machine Learning and Deep Learning Strategies
2024, The American journal of Chinese medicine
DOI:10.1142/S0192415X24500265
PMID:38715181
|
综述 | 本文综述了机器学习和深度学习在传统中医中的应用和发展 | 探讨了机器学习和深度学习在中医理论中的应用,如舌诊、脉诊和辨证施治,并强调了其在中医领域的早期成功应用 | 文章指出了中医在机器学习和深度学习应用中面临的问题和挑战 | 旨在验证机器学习和深度学习在中医应用中的成就,并探讨其未来的发展 | 传统中医及其在现代技术中的应用 | 自然语言处理 | NA | 机器学习 (ML) 和深度学习 (DL) | NA | NA | NA |
23069 | 2024-08-07 |
Intelligent Stroke Disease Prediction Model Using Deep Learning Approaches
2024, Stroke research and treatment
IF:1.8Q3
DOI:10.1155/2024/4523388
PMID:38817540
|
研究论文 | 本文利用一系列生理特征参数与深度神经网络(如Wasserstein生成对抗网络和回归网络)合作,构建了一个中风预测模型 | 使用WGAN-GP进行正样本数据增强以解决样本不平衡问题,并设计了一个基于深度回归网络的中风预测模型 | NA | 开发一个智能的中风疾病预测模型,以帮助早期识别中风症状并及时干预 | 中风疾病的预测 | 机器学习 | 中风 | 深度学习 | 深度神经网络 | 生理特征参数 | 使用中风公共数据集,具体样本数量未明确 |
23070 | 2024-08-07 |
Revolutionising healthcare with artificial intelligence: A bibliometric analysis of 40 years of progress in health systems
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241258757
PMID:38817839
|
研究论文 | 本文通过文献计量分析,回顾了过去四十年人工智能在医疗系统中的发展历程 | 本文首次对人工智能在医疗系统中的应用进行了长达四十年的文献计量分析,揭示了该领域的增长趋势和关键研究方向 | NA | 评估和可视化人工智能在医疗系统中的研究趋势和影响力 | 人工智能在医疗系统中的应用 | 机器学习 | NA | 文献计量分析 | NA | 文本 | 64,063篇论文 |
23071 | 2024-08-07 |
Dermoscopy-based Radiomics Help Distinguish Basal Cell Carcinoma and Actinic Keratosis: A Large-scale Real-world Study Based on a 207-combination Machine Learning Computational Framework
2024, Journal of Cancer
IF:3.3Q2
DOI:10.7150/jca.94759
PMID:38817855
|
研究论文 | 本研究利用机器学习算法开发了一种预测模型,用于区分皮肤镜图像中的基底细胞癌(BCC)和光化性角化病(AK) | 研究开发了一个深度学习模型用于图像特征的定量分析,并整合了15种机器学习算法,通过随机组合和交叉验证生成了207种算法组合 | NA | 开发一种有效的预测模型,用于区分皮肤镜图像中的基底细胞癌和光化性角化病 | 皮肤镜图像中的基底细胞癌和光化性角化病 | 机器学习 | 皮肤癌 | 机器学习算法 | 深度学习模型 | 图像 | 904张皮肤镜图像 |
23072 | 2024-08-07 |
Simulation of Automatically Annotated Visible and Multi-/Hyperspectral Images Using the Helios 3D Plant and Radiative Transfer Modeling Framework
2024, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0189
PMID:38817960
|
研究论文 | 本文提出了一种基于Helios 3D植物建模软件的辐射传输建模框架,用于模拟植物的可见光、多/高光谱图像,并自动生成标注信息 | 该框架能够模拟RGB、多/高光谱、热成像和深度相机图像,并生成带有完全解析的参考标签的植物图像,如植物物理特性、叶片化学浓度和叶片生理特性 | NA | 解决深度学习模型在植物和作物特性分析中对标注图像数据集的需求,以及从遥感数据中提取复杂特性的挑战 | 植物和作物的特性分析 | 计算机视觉 | NA | 辐射传输建模 | 深度学习模型 | 图像 | NA |
23073 | 2024-08-07 |
Negativity and Positivity in the ICU: Exploratory Development of Automated Sentiment Capture in the Electronic Health Record
2023-Oct, Critical care explorations
DOI:10.1097/CCE.0000000000000960
PMID:37753238
|
研究论文 | 开发和验证用于捕捉重症监护病房(ICU)记录中提供者情绪的算法模型 | 开发了两种情绪模型,一种基于关键词的方法,另一种是基于解码增强的双向编码器表示与解耦注意力-v3的深度学习模型,这些模型在临床笔记中的情绪检测准确性高于通用语言算法 | NA | 探索开发用于电子健康记录中自动捕捉情绪的算法 | 成人ICU患者的记录 | 自然语言处理 | NA | 深度学习 | 双向编码器表示与解耦注意力-v3 | 文本 | 198,944条笔记,涉及52,997次ICU入院记录,以及2018至2019年UCSF ICU入院患者的外部样本 |
23074 | 2024-08-07 |
Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome
2023-Jun, Human genetics
IF:3.8Q2
DOI:10.1007/s00439-023-02559-9
PMID:37086329
|
研究论文 | 本文使用深度学习蛋白质预测算法AlphaFold2来筛选Deafness Variation Database中的不确定意义变异,通过预测蛋白质折叠自由能差异来确定其致病性 | 利用AlphaFold2算法和DDGun3D工具预测蛋白质折叠自由能差异,以评估听力损失相关基因变异的致病性 | 研究仅针对Deafness Variation Database中的变异进行分析,且样本量相对较小 | 评估听力损失相关基因变异的不确定意义变异的致病性 | Deafness Variation Database中的128,167个错义变异 | 生物信息学 | 听力损失 | AlphaFold2, DDGun3D | 深度学习 | 基因变异数据 | 119名患者 |
23075 | 2024-08-07 |
Anatomy-guided deep learning for object localization in medical images
2022 Feb-Mar, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.2612566
PMID:36860592
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
23076 | 2024-08-07 |
Predicting post-contrast information from contrast agent free cardiac MRI using machine learning: Challenges and methods
2022, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2022.894503
PMID:36051279
|
研究论文 | 本研究旨在通过分析对比剂前后的心脏磁共振成像(CMR)图像,利用对比剂前的信息预测对比剂后的信息,并提出相应的方法和挑战。 | 本研究首次尝试使用深度学习(DL)、支持向量机(SVM)和决策树(DT)方法,从无对比剂的心脏磁共振成像中预测对比剂后的信息。 | 初步结果显示性能一般,这一研究领域仍存在许多未解决的问题。 | 研究目的是通过对比剂前的心脏磁共振成像预测对比剂后的信息。 | 研究对象包括272例回顾性选择的心脏磁共振成像研究,其中108例为心肌梗死(MI),164例为健康对照。 | 机器学习 | 心血管疾病 | 深度学习 | UNet和ResNet50 | 图像 | 272例心脏磁共振成像研究,包括108例心肌梗死和164例健康对照,共使用722对电影短轴(SAX)图像和分割掩模进行实验。 |
23077 | 2024-08-07 |
Random synaptic feedback weights support error backpropagation for deep learning
2016-11-08, Nature communications
IF:14.7Q1
DOI:10.1038/ncomms13276
PMID:27824044
|
研究论文 | 本文探讨了大脑中多层神经元结构中错误传播的机制,并提出了一种基于随机突触反馈权重的新机制,该机制在多种任务中与反向传播算法同样有效 | 提出了一种基于随机突触反馈权重的错误传播机制,打破了传统反向传播算法需要精确对称连接模式的假设 | NA | 探讨大脑如何利用错误信号进行学习,并挑战传统学习算法的约束 | 大脑中多层神经元结构的错误传播机制 | 机器学习 | NA | NA | NA | NA | NA |
23078 | 2024-08-07 |
Enhancing plant-based cheese formulation through molecular docking and dynamic simulation of tocopherol and retinol complexes with zein, soy and almond proteins via SVM-machine learning integration
2024-Sep-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2024.139520
PMID:38723573
|
研究论文 | 本研究通过分子对接和动态模拟结合机器学习算法,优化植物基奶酪中蛋白质与配体的相互作用,以提高其质地、营养价值和风味特性 | 本研究首次将分子对接和动态模拟与机器学习算法结合,用于优化植物基奶酪的配方 | NA | 通过分子对接和动态模拟优化植物基奶酪的配方,以满足可持续发展的需求 | 主要研究了zein、大豆和杏仁蛋白与生育酚和视黄醇的相互作用 | 机器学习 | NA | 分子对接、动态模拟 | SVM | 蛋白质-配体相互作用数据 | NA |
23079 | 2024-08-07 |
Automatic ARDS surveillance with chest X-ray recognition using convolutional neural networks
2024-Aug, Journal of critical care
IF:3.2Q2
DOI:10.1016/j.jcrc.2024.154794
PMID:38552452
|
研究论文 | 本研究旨在设计、验证并评估一种深度学习模型,该模型能够通过胸部X光识别区分肺炎、急性呼吸窘迫综合征(ARDS)和正常肺部 | 开发了一种基于胸部X光模式识别的深度学习模型,能够快速区分ARDS患者与正常肺部患者 | 未来研究应在临床环境中前瞻性地评估这些工具 | 设计并验证一种能够通过胸部X光识别区分肺炎、ARDS和正常肺部的深度学习模型 | 胸部X光图像 | 计算机视觉 | 急性呼吸窘迫综合征 | 卷积神经网络(CNN) | CNN | 图像 | 15,899名成年患者 |
23080 | 2024-08-07 |
Federated learning with knowledge distillation for multi-organ segmentation with partially labeled datasets
2024-Jul, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103156
PMID:38603844
|
研究论文 | 本文提出了一种结合知识蒸馏的联邦学习方法,用于在部分标记的多器官CT数据集上进行分割 | 使用知识蒸馏来规范本地训练,结合全局模型和预训练的特定器官分割模型,以解决联邦学习中的'灾难性遗忘'问题 | NA | 提高多器官CT分割的准确性和效率 | 多器官CT图像分割 | 计算机视觉 | NA | 联邦学习 | U-Net | 图像 | 8个公开的腹部CT数据集,共889个CT用于训练,233个用于内部测试,30个用于外部测试 |