本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2301 | 2025-05-18 |
Deep learning algorithm enables automated Cobb angle measurements with high accuracy
2025-Jul, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-024-04853-7
PMID:39688663
|
研究论文 | 本研究评估了深度学习算法在全脊柱X光片上自动测量Cobb角的准确性 | 开发了一种深度学习算法,能够高精度自动测量脊柱侧弯患者的Cobb角 | 研究样本量相对较小(345例),且成人患者的测量误差高于儿童患者 | 评估深度学习算法在脊柱侧弯诊断中自动测量Cobb角的准确性 | 全脊柱X光片和脊柱侧弯患者 | 数字病理学 | 脊柱侧弯 | 深度学习 | 深度学习算法(未指定具体模型) | 图像(全脊柱X光片) | 345例患者(179例儿童,166例成人) |
2302 | 2025-05-18 |
LMCBert: An Automatic Academic Paper Rating Model Based on Large Language Models and Contrastive Learning
2025-Jun, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3550203
PMID:40168236
|
研究论文 | 本文提出了一种基于大型语言模型和对比学习的自动学术论文评分模型LMCBert,旨在提高论文接受预测的准确性 | 结合大型语言模型提取论文核心语义内容,并利用动量对比学习优化Bert训练,增强语义表示的区分度 | 未提及模型在跨学科或不同学术领域的泛化能力 | 开发高效的自动学术论文评分方法,减少人工评审的资源和偏见 | 学术论文 | 自然语言处理 | NA | 大型语言模型(LLMs)、动量对比学习(MoCo) | LMCBert(基于Bert的改进模型) | 文本 | 未明确提及具体样本量,但使用了公开数据集 |
2303 | 2025-05-18 |
GRU4ACE: Enhancing ACE inhibitory peptide prediction by integrating gated recurrent unit with multi-source feature embeddings
2025-Jun, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.70026
PMID:40371738
|
研究论文 | 本研究提出了一种名为GRU4ACE的创新深度学习框架,通过整合门控循环单元(GRU)和多源特征嵌入,提高了血管紧张素转换酶(ACE)抑制肽的预测准确性 | GRU4ACE框架首次整合了多源特征编码方法(包括序列信息、图形信息、语义信息和上下文信息)和GRU模型,显著提升了ACE抑制肽的预测性能 | NA | 提高ACE抑制肽的预测准确性,为新型降压药物的开发提供指导 | ACE抑制肽 | 自然语言处理 | 心血管疾病 | 自然语言处理(NLP)嵌入、预训练蛋白质语言模型(PLM)嵌入 | GRU | 蛋白质序列数据 | NA |
2304 | 2025-05-18 |
Deep-Diffeomorphic Networks for Conditional Brain Templates
2025-Jun-01, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.70229
PMID:40372124
|
research paper | 本文提出了一种基于深度学习的条件性脑模板生成方法,利用微分同胚框架来创建几何方法,以捕捉年龄依赖的解剖学差异 | 使用微分同胚(拓扑保持)框架创建纯几何方法,能够生成具有高空间保真度和一致拓扑结构的条件性脑模板 | 尽管方法在捕捉年龄依赖的解剖学差异方面有一定效果,但仍需进一步改进以更准确地跟踪所有脑结构的变化 | 开发一种能够生成条件性脑模板的深度学习方法,以改进神经影像分析中的配准精度和脑发育与退化过程的捕捉 | 认知正常的参与者(来自阿尔茨海默病神经影像倡议ADNI的数据集) | 神经影像分析 | 阿尔茨海默病 | 深度学习 | deep-diffeomorphic networks | 脑部扫描图像 | 来自ADNI的认知正常参与者数据集 |
2305 | 2025-05-18 |
Automated high precision PCOS detection through a segment anything model on super resolution ultrasound ovary images
2025-May-15, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-01744-2
PMID:40369044
|
研究论文 | 提出了一种名为QEI-SAM的新型集成方法,用于提高超声卵巢图像质量并进行卵巢囊肿分割,以实现准确预测多囊卵巢综合征(PCOS) | 结合了ESRGAN进行图像增强和SAM进行囊肿分割,以及多种CNN模型进行PCOS诊断,实现了高精度的自动化检测 | 未提及模型在临床环境中的实际应用验证或跨中心验证结果 | 开发自动化高精度PCOS检测系统以辅助临床诊断 | 超声卵巢图像中的囊肿 | 数字病理 | 多囊卵巢综合征 | 超声成像 | ESRGAN, SAM, CNN (包括ResNet 50, ResNet 101, VGG 16, VGG 19, AlexNet和Inception v3) | 超声图像 | NA |
2306 | 2025-05-18 |
Automated Microbubble Discrimination in Ultrasound Localization Microscopy by Vision Transformer
2025-May-15, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2025.3570496
PMID:40372868
|
研究论文 | 本文提出了一种基于视觉变换器(ViT)的自动化微泡鉴别方法,用于超声定位显微镜(ULM)中的微血管成像 | 提出了一种减少先验知识的通用ULM流程,利用深度学习模型同时提取微泡信号并减少每帧的斑点噪声,无需估计脉冲响应和微泡数量 | 需要大量合成数据进行训练,且在实际应用中的泛化能力有待进一步验证 | 提高超声定位显微镜在微血管成像中的性能和准确性 | 微泡信号和微血管成像 | 计算机视觉 | NA | 超声定位显微镜(ULM) | 视觉变换器(ViT) | 图像 | 一个计算机模拟数据集和四个活体数据集(小鼠肿瘤、大鼠脑部、大鼠脑部团注和大鼠肾脏) |
2307 | 2025-05-18 |
A sub-meter resolution urban surface albedo dataset for 34 U.S. cities based on deep learning
2025-May-14, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05109-2
PMID:40368894
|
研究论文 | 本研究利用深度学习和多源遥感数据,首次为美国34个主要城市制作了高分辨率的城市表面反照率地图 | 首次为34个美国主要城市提供亚米级分辨率的城市表面反照率数据集,结合了多种遥感数据和U-Net模型进行不透水和透水表面分类及反照率预测 | 研究仅针对美国34个城市,可能无法直接推广到其他地区或城市 | 提高城市热环境理解的精确度,为城市规划和环境监测提供数据支持 | 美国34个主要城市的城市表面反照率 | 遥感与深度学习 | NA | 多源遥感数据(NAIP影像、屋顶反照率数据、建筑足迹、土地覆盖分类和Sentinel-2影像) | U-Net | 遥感影像 | 美国34个主要城市 |
2308 | 2025-05-18 |
A fusocelular skin dataset with whole slide images for deep learning models
2025-May-14, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05108-3
PMID:40368949
|
研究论文 | 介绍了一个名为AI4SkIN的公开数据集,用于皮肤梭形细胞病变的深度学习模型研究 | 首次公开了用于皮肤梭形细胞病变的WSI数据集,并采用创新的众包协议进行标注 | 未提及具体的数据集使用限制或模型性能的局限性 | 开发并验证多类皮肤梭形细胞病变分类方法 | 皮肤梭形细胞病变的WSI图像 | 数字病理学 | 皮肤癌 | 深度学习 | 基于高斯过程的机器学习模型 | WSI图像 | 641张H&E染色的WSI图像 |
2309 | 2025-05-18 |
Evaluating masked self-supervised learning frameworks for 3D dental model segmentation tasks
2025-May-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-01014-1
PMID:40368972
|
研究论文 | 评估掩码自监督学习框架在3D牙科模型分割任务中的应用 | 首次在3D牙科模型领域探索了四种掩码自监督学习框架(Point-BERT、Point-MAE、Point-GPT和Point-M2AE)的适用性 | 当标记数据充足时,预训练带来的性能提升会减弱 | 提高牙科模型分割任务的自动化水平,支持计算机辅助治疗规划 | 3D牙科模型(牙齿和牙套) | 计算机视觉 | 牙科疾病 | 掩码自监督学习 | Point-BERT, Point-MAE, Point-GPT, Point-M2AE | 3D模型数据 | 超过4000个未标记的3D牙科模型(预训练),以及公开可用的Teeth3DS数据集和自建的牙套分割数据集(微调) |
2310 | 2025-05-18 |
Advanced internet of things enhanced activity recognition for disability people using deep learning model with nature-inspired optimization algorithms
2025-May-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-00379-7
PMID:40369092
|
研究论文 | 提出了一种结合深度学习和自然启发优化算法的高级物联网增强活动识别模型,用于残疾人士 | 结合自适应黑猩猩优化算法和斑马优化算法进行特征子集选择和超参数优化,提高了活动识别的准确性 | 仅通过智能手机数据集进行验证,未在其他设备或场景下测试 | 提高残疾人士活动识别的准确性和效率 | 残疾人士的活动数据 | 计算机视觉 | NA | 深度学习、优化算法 | DCAE、AdCO、ZOA | 智能手机传感器数据 | 未明确说明样本数量,使用了HAR智能手机数据集 |
2311 | 2025-05-18 |
A computational framework for IoT security integrating deep learning-based semantic algorithms for real-time threat response
2025-May-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-93898-2
PMID:40369098
|
研究论文 | 提出了一种结合深度学习和语义推理的框架,用于增强物联网(IoT)安全中的威胁情报和自主响应能力 | 整合了CNN用于空间异常检测和RNN用于序列模式识别,同时利用知识图谱进行上下文感知的威胁检测,结合了边缘计算和实时流处理技术 | 未来工作需要关注实际部署和自适应威胁情报 | 提升物联网网络的安全性能,特别是在实时威胁检测和响应方面 | 物联网网络的安全威胁 | 机器学习 | NA | 深度学习,语义推理,边缘计算,实时流处理 | CNN, RNN | 实时流数据 | 使用CICIoT 2023数据集和自定义物联网测试平台进行广泛统计验证 |
2312 | 2025-05-18 |
A vision transformer based CNN for underwater image enhancement ViTClarityNet
2025-May-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-91212-8
PMID:40369132
|
research paper | 提出了一种基于视觉Transformer和CNN的水下图像增强模块ViT-Clarity,并通过生成模型BlueStyleGAN创建合成水下图像数据集 | 结合视觉Transformer与CNN提升水下图像增强性能,并利用BlueStyleGAN生成合成数据集解决数据不足问题 | 依赖合成数据集,可能无法完全覆盖真实水下环境的复杂性 | 提升水下计算机视觉任务的图像质量 | 水下图像 | computer vision | NA | vision transformer, CNN, generative model | ViT-Clarity, ClarityNet, BlueStyleGAN | image | 五个代表不同水下条件的数据集 |
2313 | 2025-05-18 |
A metaheuristic optimization-based approach for accurate prediction and classification of knee osteoarthritis
2025-May-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99460-4
PMID:40369219
|
研究论文 | 本研究提出了一种基于元启发式优化的方法,用于膝关节骨关节炎的准确预测和分类 | 采用集体迁移学习方法和四种预训练模型提取深度特征,结合二元灰雁优化器(bGGO)进行特征选择,并使用CNN超参数算法优化模型 | 未提及具体样本量及数据来源的多样性,可能影响模型的泛化能力 | 开发先进的深度学习方法用于膝关节骨关节炎的风险评估和疼痛演变预测 | 膝关节骨关节炎患者或有患病风险的人群 | 数字病理学 | 骨关节炎 | 深度学习,迁移学习 | CNN, VGG19, ResNet50, AlexNet, GoogleNet | 图像 | NA |
2314 | 2025-05-18 |
Development and validation of a deep learning model for diagnosing neuropathic corneal pain via in vivo confocal microscopy
2025-May-14, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01577-3
PMID:40369269
|
研究论文 | 开发并验证了一种基于深度学习的模型,用于通过体内共聚焦显微镜诊断神经性角膜疼痛 | 提出了一种新的神经性角膜疼痛筛查系统,能够高效检测微神经瘤,并具备不确定性量化机制 | 虽然模型表现出色,但在新机构数据上的泛化能力略有下降(AuROC: 0.90) | 开发一种自动化工具以提高神经性角膜疼痛的诊断效率和准确性 | 神经性角膜疼痛患者 | 数字病理学 | 神经性角膜疼痛 | 体内共聚焦显微镜(IVCM) | 深度学习模型 | 图像 | 103,168张IVCM图像 |
2315 | 2025-05-18 |
Classification of lung cancer severity using gene expression data based on deep learning
2025-May-14, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-025-03011-w
PMID:40369502
|
研究论文 | 本研究提出了一种基于深度学习的卷积神经网络模型,用于利用基因表达数据对肺癌严重程度进行分类 | 采用CNN模型结合F检验特征选择方法,针对基因数据中的类别不平衡和过拟合问题进行了优化,在LUAD和LUSC两种肺癌类型分类中取得了高准确率 | 基因数据样本量较小而特征数量较多,可能影响模型的泛化能力 | 开发一种能够准确分类肺癌严重程度的深度学习方法 | LUAD和LUSC两种类型的肺癌 | 数字病理 | 肺癌 | 基因表达数据分析 | CNN | 基因表达数据 | 未明确说明样本数量,但提到样本量较小 |
2316 | 2025-05-18 |
Optimizing breast lesions diagnosis and decision-making with a deep learning fusion model integrating ultrasound and mammography: a dual-center retrospective study
2025-May-14, Breast cancer research : BCR
IF:6.1Q1
DOI:10.1186/s13058-025-02033-6
PMID:40369585
|
研究论文 | 本研究开发了一个结合超声和乳腺X线摄影的深度学习融合模型(DL-UM),旨在优化乳腺病变的诊断和管理决策 | 通过整合超声和乳腺X线摄影图像,开发了DL-UM网络,显著提高了乳腺病变诊断的敏感性和特异性,特别是在超声和乳腺X线摄影BI-RADS分类不一致的情况下 | 研究为双中心回顾性研究,样本量相对有限(1283名女性),且未进行前瞻性验证 | 优化乳腺病变的诊断和管理决策,减少不必要的活检 | 1283名患有乳腺病变的女性 | 数字病理 | 乳腺癌 | 深度学习 | DL-UM(结合超声和乳腺X线摄影的深度学习融合模型) | 图像(超声和乳腺X线摄影) | 1283名女性 |
2317 | 2025-05-18 |
Fate-tox: fragment attention transformer for E(3)-equivariant multi-organ toxicity prediction
2025-May-14, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-025-01012-5
PMID:40369624
|
研究论文 | 开发了一种名为FATE-Tox的新型多视角深度学习框架,用于多器官毒性预测 | 使用三种片段化方法构建片段级图,结合2D和3D分子表示,通过片段注意力变换器识别潜在的3D毒性基团,提高了预测性能和可解释性 | 未提及具体样本量,可能受限于基准数据集的大小和多样性 | 解决药物开发中的多器官毒性预测问题 | 药物化合物的毒性预测 | 机器学习 | NA | 深度学习 | Transformer | 分子结构数据 | 使用了MoleculeNet和TDC的基准数据集(BBBP、SIDER、ClinTox、DILI、Skin Reaction、Carcinogens、hERG),但未提及具体样本量 |
2318 | 2025-05-18 |
SlitNET: A Deep Learning Enabled Spectrometer Slit
2025-May-13, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c06014
PMID:40298458
|
research paper | 介绍了一种基于深度学习模型SlitNET的增强型光谱仪狭缝,能够同时提高光谱的通量和分辨率 | 通过深度学习模型SlitNET实现了光谱分辨率的增强,使得使用宽狭缝时也能达到窄狭缝的分辨率效果 | 需要先通过合成数据进行训练,再通过实验数据进行微调,可能对数据质量和数量有较高要求 | 提高光谱仪的分析灵敏度和特异性,实现高通量和高分辨率的同时优化 | 拉曼光谱 | 机器学习和光学光谱 | NA | 深度学习 | 神经网络 | 光谱数据 | NA |
2319 | 2025-05-18 |
Deep Learning Based Surface Classification of Functionalized Polymer Coatings
2025-May-13, Langmuir : the ACS journal of surfaces and colloids
IF:3.7Q2
DOI:10.1021/acs.langmuir.4c03971
PMID:40306624
|
研究论文 | 本研究利用深度学习神经网络分析功能化聚合物涂层的表面分类 | 通过深度学习神经网络对聚合物涂层进行高精度分类,即使面对未知聚合物涂层也能保持高准确率 | 概念验证研究,样本量有限,仅包含10种结构不同的聚合物涂层 | 开发一种简单、快速且可扩展的表面分析方法,用于功能化聚合物涂层的分类 | 功能化聚合物涂层的表面特性 | 计算机视觉 | NA | 偏振光显微镜成像 | CNN | 图像 | 10种结构不同的聚合物涂层 |
2320 | 2025-05-18 |
HBUED: An EEG dataset for emotion recognition
2025-May-12, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.119397
PMID:40368143
|
研究论文 | 本文介绍了一个用于情感识别的大规模EEG数据集HBUED,并提出了一种深度学习方法来提高EEG情感识别的性能 | 提出了一个大规模EEG数据集HBUED,并设计了一种双输入网络架构和平行特征提取模块来提升情感识别性能 | 未提及具体的数据集样本数量或多样性限制 | 提高基于EEG的情感识别性能 | 人类情感识别 | 机器学习 | NA | EEG | 深度学习 | EEG信号 | 未明确提及具体样本数量 |