深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24103 篇文献,本页显示第 23241 - 23260 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
23241 2024-08-07
Deep Learning-reconstructed Parallel Accelerated Imaging for Knee MRI
2024, Current medical imaging IF:1.1Q3
研究论文 本研究比较了深度学习(DL)重建的并行加速成像技术在膝关节MRI中的图像质量 使用深度学习技术重建的并行加速成像技术在膝关节MRI中显著降低了噪声,同时保持了图像的锐度和诊断质量 研究仅限于膝关节MRI,且样本量相对较小 比较深度学习重建的并行加速成像技术与传统技术在膝关节MRI中的图像质量 44个膝关节MRI扫描,来自38名成年患者 计算机视觉 NA 深度学习(DL)重建的并行加速成像技术 NA 图像 44个膝关节MRI扫描,38名成年患者
23242 2024-08-07
Image Quality Improvement of Low-dose Abdominal CT using Deep Learning Image Reconstruction Compared with the Second Generation Iterative Reconstruction
2024, Current medical imaging IF:1.1Q3
研究论文 本研究探讨了深度学习图像重建(DLIR)在降低辐射剂量的情况下,是否能提高腹部CT图像质量,并与第二代自适应统计迭代重建(ASiR-V)进行比较 DLIR算法在提高图像对比度噪声比(CNR)、图像质量、主观噪声和病变显著性方面表现优于ASiR-V 本研究为回顾性研究,样本量有限,且仅比较了同一供应商的不同型号扫描仪 确定DLIR是否能在降低辐射剂量的同时提供更好的图像质量 腹部CT图像质量及辐射剂量 计算机视觉 NA 深度学习图像重建 DLIR 图像 102名患者
23243 2024-08-07
Chest CT Image based Lung Disease Classification - A Review
2024, Current medical imaging IF:1.1Q3
综述 本文对基于胸部CT图像的肺疾病分类方法进行了广泛的分析 深度学习技术在早期识别肺部疾病方面带来了革命性的变化 现有的机器学习技术仍存在挑战 帮助年轻研究人员构建更先进的肺疾病分类系统 肺疾病分类方法及其性能 计算机视觉 肺疾病 NA NA 图像 NA
23244 2024-08-07
Deep Learning-based Glaucoma Detection Using CNN and Digital Fundus Images: A Promising Approach for Precise Diagnosis
2024, Current medical imaging IF:1.1Q3
研究论文 本文介绍了一种基于深度学习的眼科疾病检测方法,通过使用卷积神经网络(CNN)和数字眼底图像来提高青光眼诊断的准确性 本研究利用AI模型对眼底图像进行分析,实现了对青光眼的高诊断准确率 现有方法存在无症状进展、依赖主观反馈、需要多次测试、晚期检测、预防测试有限及受外部因素影响等局限性 开发一种基于人工智能的青光眼检测方法,以减少青光眼相关的失明并提供更精确的诊断 青光眼检测 计算机视觉 青光眼 卷积神经网络(CNN) CNN 图像 分析了来自健康、青光眼和疑似患者类别的20张眼底图像
23245 2024-08-07
Motion-resolved 3D Pulmonary MRI Reconstruction using Sinusoidal Representation Networks
2024, Current medical imaging IF:1.1Q3
研究论文 本文提出了一种基于正弦表示网络(SIREN)的运动解析三维肺部MRI重建方案 使用SIREN学习配准图,实现高效的内存使用和无监督学习 NA 提出一种新的三维肺部MRI重建方法 肺部MRI数据 计算机视觉 NA MRI SIREN 图像 十个数据集
23246 2024-08-07
An Evaluation Analysis for Computed Tomography Image Quality of Primary Liver Cancer Lesions Based on Deep Learning Image Reconstruction
2024, Current medical imaging IF:1.1Q3
研究论文 本研究评估了深度学习图像重建(DLIR)对原发性肝癌病变动态增强CT图像质量的影响 新的重建算法DLIR在显示病变结构方面表现更优 NA 评估深度学习图像重建对原发性肝癌病变动态增强CT图像质量的影响 48名肝癌患者的CT图像质量 计算机视觉 肝癌 CT 深度学习图像重建(DLIR) 图像 48名肝癌患者
23247 2024-08-07
A Novel Approach to the Technique of Lung Region Segmentation Based on a Deep Learning Model to Diagnose COVID-19 X-ray Images
2024, Current medical imaging IF:1.1Q3
研究论文 本文提出了一种基于深度学习模型的肺部区域分割新技术,用于诊断COVID-19的X光图像 提出了一种名为FocusNet的新型深度网络,用于精确分割胸部X光片中的肺部区域,并通过ResNet18分类网络提高分类准确性 NA 开发一种深度学习模型,准确分类胸部X光图像,特别是肺部区域,以提高COVID-19和肺炎诊断的效率和准确性 胸部X光图像中的肺部区域 计算机视觉 COVID-19 深度学习 FocusNet, ResNet18 图像 评估了正常人、COVID-19患者和肺炎患者的肺部区域
23248 2024-08-07
Factors associated with interobserver variation amongst pathologists in the diagnosis of endometrial hyperplasia: A systematic review
2024, PloS one IF:2.9Q1
综述 本综述旨在识别影响病理学家在诊断子宫内膜增生(EH)中观察者间变异性的特定病理学家因素 识别了一些新颖的工作实践,如对核异型性的“程度”进行分级以及采用半自动定量图像分析/深度学习模型等客观诊断方法 尽管强调了病理学家特定因素和工作实践对准确诊断EH的影响,但相关研究数量较少 旨在识别影响病理学家在诊断子宫内膜增生中观察者间变异性的特定病理学家因素 病理学家在诊断子宫内膜增生中的观察者间变异性 数字病理学 妇科疾病 NA 深度学习模型 图像 八项研究
23249 2024-08-07
Super-resolution based Nodule Localization in Thyroid Ultrasound Images through Deep Learning
2024, Current medical imaging IF:1.1Q3
研究论文 本文提出了一种基于深度学习的超分辨率方法来自动定位甲状腺超声图像中的结节 使用超分辨率单图像重建和深度学习技术,该方法在准确性和质量上优于最新的技术 NA 开发一种自动化的方法来识别甲状腺超声图像中的结节 甲状腺结节 计算机视觉 甲状腺疾病 深度学习 Adam分类器 图像 NA
23250 2024-08-07
Building and validating an artificial intelligence model to identify tracheobronchopathia osteochondroplastica by using bronchoscopic images
2024 Jan-Dec, Therapeutic advances in respiratory disease IF:3.3Q2
研究论文 本文构建并验证了一种人工智能模型,用于通过支气管镜图像识别气管支气管骨软骨成形术 开发了一种基于支气管镜图像的人工智能模型,能够区分气管支气管骨软骨成形术与其他多结节气道疾病 NA 构建一个人工智能模型,用于通过支气管镜图像区分气管支气管骨软骨成形术与其他多结节气道疾病 气管支气管骨软骨成形术(TO)与其他多结节气道疾病 机器学习 NA 卷积神经网络(CNN) EfficientNet 图像 201名多结节气道疾病患者和213名无任何气道病变患者,共使用了2183张多结节病变支气管镜图像和1733张无气道病变图像进行深度学习
23251 2024-08-07
Fuzzy ensemble of fined tuned BERT models for domain-specific sentiment analysis of software engineering dataset
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度学习和微调BERT模型的混合技术,用于软件工程领域的特定情感分析 引入模糊逻辑集合多个微调BERT模型,提高了对中性情感的预测准确性,并覆盖了现有工具的局限 NA 开发适用于软件工程领域的特定情感分析工具 软件工程领域的社区问答数据集 自然语言处理 NA 深度学习 BERT模型(包括Bert-Base, Bert-Large, Bert-LSTM, Bert-GRU, Bert-CNN) 文本 使用了四个公开的基准数据集:Stack Overflow, JavaLib, Jira, 和 Code Review
23252 2024-08-07
Deep learning for identifying bee species from images of wings and pinned specimens
2024, PloS one IF:2.9Q1
研究论文 本文研究了使用深度学习技术从蜜蜂翅膀和标本图像中识别蜜蜂物种的方法 本文展示了计算机视觉在分类较小、难以识别的蜜蜂物种方面的潜力,这些物种在众包数据集中代表性不足 NA 评估深度学习分类模型在更具挑战性的蜜蜂分类中的表现 蜜蜂物种的识别 计算机视觉 NA 深度学习 卷积神经网络 (CNN) 图像 20种和18种蜜蜂物种分别来自6个和4个属
23253 2024-08-07
Corrigendum: Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
2024, Frontiers in medicine IF:3.1Q1
correction NA NA NA NA NA NA NA NA NA NA NA
23254 2024-08-07
Live-cell imaging in the deep learning era
2023-12, Current opinion in cell biology IF:6.0Q1
研究论文 本文探讨了深度学习在活细胞成像中的应用及其对关键任务的辅助作用 介绍了深度学习在活细胞成像中的新应用,包括漂移校正、去噪、超分辨率成像、人工标记、跟踪和时间序列分析 NA 探讨深度学习在活细胞成像中的应用及其对关键任务的辅助作用 活细胞成像技术及其数据分析 计算机视觉 NA 深度学习 NA 图像 NA
23255 2024-08-07
Deep Learning-Facilitated Study of the Rate of Change in Photoreceptor Outer Segment Metrics in RPGR-Related X-Linked Retinitis Pigmentosa
2023-Nov-01, Investigative ophthalmology & visual science IF:5.0Q1
研究论文 本研究利用深度学习模型(DLM)辅助测量视网膜色素上皮(RPGR)相关X连锁视网膜色素变性(XLRP)患者的视网膜外节(OS)三维(3D)指标,并评估这些指标的纵向变化及其相关因素 本研究首次利用深度学习模型辅助测量视网膜外节的三维指标,并评估其在视网膜色素变性中的应用 本研究为回顾性队列研究,样本仅包括34名男性患者,可能存在选择偏倚 旨在评估视网膜外节指标在视网膜色素变性中的纵向变化及其相关因素 视网膜色素上皮(RPGR)相关X连锁视网膜色素变性(XLRP)患者的视网膜外节(OS)三维指标 计算机视觉 视网膜色素变性 深度学习 深度学习模型(DLM) 图像 34名男性患者
23256 2024-08-07
RGC-Net: An Automatic Reconstruction and Quantification Algorithm for Retinal Ganglion Cells Based on Deep Learning
2023-05-01, Translational vision science & technology IF:2.6Q2
研究论文 本文开发了一种基于深度学习的视网膜神经节细胞自动重建和量化算法RGC-Net RGC-Net能够自动分割视网膜神经节细胞的轴突和细胞体,提供了一种比手动分析更高效和快速的新工具 NA 开发一种基于深度学习的全自动重建和量化视网膜神经节细胞的算法 视网膜神经节细胞的轴突和细胞体 计算机视觉 NA 深度学习 CNN 图像 166个视网膜神经节细胞扫描图像,其中132个用于训练,34个用于测试
23257 2024-08-07
Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
2023, Frontiers in medicine IF:3.1Q1
研究论文 本研究比较了传统放射组学特征的机器学习与深度学习放射组学在预测头颈部鳞状细胞癌患者治疗结果中的应用 结合临床数据、放射组学特征和医学图像与深度学习模型,实现了高性能和跨机构通用性 临床和放射组学数据的特征选择导致过拟合和较差的跨机构通用性 评估传统放射组学和深度学习放射组学在预测头颈部鳞状细胞癌患者总体生存和无病生存中的效果 头颈部鳞状细胞癌患者的治疗结果 机器学习 头颈部鳞状细胞癌 放射组学 卷积神经网络 图像 238名头颈部鳞状细胞癌患者
23258 2024-08-07
Using deep learning method to identify left ventricular hypertrophy on echocardiography
2022-Apr, The international journal of cardiovascular imaging
研究论文 本研究旨在开发一种基于深度学习算法的半自动诊断网络,用于通过超声心动图检测左心室肥厚(LVH) 引入了ResNet和U-net++模型,分别用于分类和分割任务,并成功构建了一个集成框架,能够自动分类四种情况(正常、HCM、CA和HHD) NA 开发一种基于深度学习算法的半自动诊断网络,用于通过超声心动图检测左心室肥厚 左心室肥厚(LVH)及其潜在病因 机器学习 心血管疾病 深度学习 ResNet, U-net++ 图像 1610份经胸超声心动图,包括724名患者(189名高血压性心脏病,218名肥厚型心肌病,58名心脏淀粉样变性,以及259名对照组)
23259 2024-08-07
Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples
2016, Journal of pathology informatics
研究论文 本研究提出并评估了一种基于抗体引导注释和深度学习的方法,用于量化苏木精和伊红(H&E)染色乳腺癌样本中的肿瘤浸润免疫细胞 本研究首次采用抗体引导注释和深度学习技术,通过H&E染色样本量化肿瘤浸润免疫细胞,提高了量化过程的客观性和准确性 NA 开发一种客观且准确的方法来量化乳腺癌样本中的肿瘤浸润免疫细胞 乳腺癌患者的肿瘤样本 数字病理学 乳腺癌 H&E染色 卷积神经网络(CNN) 图像 20名乳腺癌患者的肿瘤样本,123,442个标记的超像素
23260 2024-08-07
The combination of deep learning and pseudo-MS image improves the applicability of metabolomics to congenital heart defect prenatal screening
2024-Aug-01, Talanta IF:5.6Q1
研究论文 本研究通过代谢组学分析,结合深度学习和伪MS图像,建立了用于胎儿先天性心脏病(FCHD)产前筛查的诊断模型。 本研究首次将深度学习与伪MS图像结合,用于提高代谢组学在胎儿先天性心脏病产前筛查中的适用性。 研究样本量较小,需要进一步扩大样本量以验证模型的泛化能力。 探索母体中胎儿先天性心脏病的代谢改变,并建立有效的诊断模型。 母体中胎儿先天性心脏病的代谢标志物及诊断模型。 机器学习 先天性心脏病 超高效液相色谱-质谱/质谱(UPLC-MS/MS) 卷积神经网络(CNN) 伪MS图像 两批孕妇,共36种显著改变的代谢物
回到顶部