本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23261 | 2024-08-07 |
A hybrid feature weighted attention based deep learning approach for an intrusion detection system using the random forest algorithm
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302294
PMID:38781186
|
研究论文 | 本文提出了一种混合特征加权注意力深度学习方法,结合随机森林算法用于入侵检测系统,以解决类别不平衡问题 | 本文创新性地结合了均值卷积层(MCL)、特征加权注意力(FWA)学习、双向长短期记忆网络(BI-LSTM)和随机森林算法,形成了一个独特的混合模型MCL-FWA-BILSTM,有效提高了入侵检测的准确性和降低了误报率 | 本文未明确提及该方法的局限性 | 研究旨在开发和完善高级算法和技术,如异常检测、成本敏感学习和过采样方法,以有效处理类别不平衡问题,提高入侵检测系统的敏感性和减少误报 | 研究对象为入侵检测系统中的类别不平衡问题 | 机器学习 | NA | 随机森林算法 | CNN, LSTM | 数据集 | 使用了NSL-KDD和UNSW-NB-15两个广泛可用的IDS数据集 |
23262 | 2024-08-07 |
Deep Learning Model Coupling Wearable Bioelectric and Mechanical Sensors for Refined Muscle Strength Assessment
2024, Research (Washington, D.C.)
DOI:10.34133/research.0366
PMID:38783913
|
研究论文 | 本研究提出了一种结合肌电和应变传感器的可穿戴设备,用于同步采集肌肉活动时的表面肌电图和机械信号,并通过基于时间卷积网络(TCN)+ Transformer(Tcnformer)的深度学习模型进行肌肉力量的准确分级和预测。 | 本研究通过结合深度聚类技术,实现了对肌肉力量的25级分类,相较于传统的5级分类更加精细。 | NA | 旨在提高肌肉力量评估的精确性,并可能改善相关的临床诊断和康复结果。 | 肌肉力量评估 | 机器学习 | NA | 表面肌电图, 应变传感器 | 时间卷积网络(TCN)+ Transformer(Tcnformer) | 信号 | NA |
23263 | 2024-08-07 |
Prostate Cancer Detection from MRI Using Efficient Feature Extraction with Transfer Learning
2024, Prostate cancer
IF:2.3Q3
DOI:10.1155/2024/1588891
PMID:38783970
|
研究论文 | 本研究利用深度学习模型(VGG16、VGG19、ResNet50和ResNet50V2)进行特征提取,并结合随机森林分类器诊断前列腺癌 | 采用迁移学习方法,使用少量标注的前列腺癌数据优化深度学习模型,提高模型在不同患者群体和临床情况下的泛化能力 | 研究中提到的数据集限制问题,尽管使用了迁移学习,但仍可能受限于可用数据量 | 探索机器学习技术在前列腺癌诊断中的应用,特别是深度学习模型的特征提取能力 | 前列腺癌的MRI图像 | 机器学习 | 前列腺癌 | 迁移学习 | VGG16, VGG19, ResNet50, ResNet50V2 | 图像 | 未明确提及具体样本数量 |
23264 | 2024-08-07 |
BCSLinker: automatic method for constructing a knowledge graph of venous thromboembolism based on joint learning
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1272224
PMID:38784240
|
研究论文 | 本文提出了一种基于联合学习的深静脉血栓知识图谱自动构建方法BCSLinker | 采用Biaffine Common-Sequence Self-Attention模块同时提取实体和关系,减少错误传播,并使用多标签交叉熵损失减少冗余信息影响 | NA | 构建一个更准确全面的深静脉血栓知识图谱,为诊断、评估和治疗提供参考 | 深静脉血栓患者的电子病历数据 | 自然语言处理 | 深静脉血栓 | 深度学习 | BCSLinker | 文本 | 来自三级医院的深静脉血栓患者电子病历数据 |
23265 | 2024-08-07 |
Tongue feature recognition to monitor rehabilitation: deep neural network with visual attention mechanism
2024, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2024.1392513
PMID:38784768
|
研究论文 | 本文开发了一种新的深度学习架构,专门用于分析和分类舌头特征,包括颜色、形状和舌苔 | 提出的方法解决了基于VGG或ResNet等传统架构的大尺寸问题,从而缓解了过拟合问题 | NA | 旨在推动舌头特征识别技术的发展,最终实现更精确的诊断和更好的患者康复 | 舌头特征的分析和分类 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | NA |
23266 | 2024-08-07 |
Wearable sensors in patient acuity assessment in critical care
2024, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2024.1386728
PMID:38784909
|
研究论文 | 本文探讨了在重症监护环境中使用可穿戴传感器数据与电子健康记录(EHR)中的临床数据相结合,以更精确地评估患者病情严重程度的方法。 | 本研究首次将可穿戴传感器数据与临床数据结合,通过深度学习模型提高了病情严重程度评估的精确度、敏感性和F1分数。 | NA | 研究目的是通过整合可穿戴传感器数据和临床数据,改进重症监护环境中患者病情严重程度的评估。 | 研究对象包括87名佩戴手腕加速度计的患者,以及他们的临床数据。 | 机器学习 | NA | 加速度计 | 深度神经网络模型(VGG, ResNet, MobileNet, SqueezeNet, 自定义Transformer网络) | 加速度计数据,临床数据 | 87名患者 |
23267 | 2024-08-07 |
Multiple sampling schemes and deep learning improve active learning performance in drug-drug interaction information retrieval analysis from the literature
2023-05-30, Journal of biomedical semantics
IF:1.6Q3
DOI:10.1186/s13326-023-00287-7
PMID:37248476
|
研究论文 | 本文首次研究了主动学习在药物-药物相互作用信息检索分析中的应用,并通过多种采样方案和深度学习算法提高了分析效率 | 首次将主动学习应用于药物-药物相互作用信息检索分析,并设计了随机负采样和正采样方法以提高分析效率 | NA | 提高药物-药物相互作用信息从文献中的检索分析效率 | 药物-药物相互作用信息检索分析 | 自然语言处理 | NA | 主动学习 | 支持向量机, 深度学习 | 文本 | PubMed摘要被分为筛选池和未筛选池,具体样本数量未提及 |
23268 | 2024-08-07 |
Deep learning on graphs for multi-omics classification of COPD
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0284563
PMID:37083575
|
研究论文 | 本研究利用卷积图神经网络(ConvGNN)结合蛋白质相互作用(PPI)网络和多组学数据,开发了一种慢性阻塞性肺疾病(COPD)分类预测模型 | 首次使用AhGlasso算法重建COPD相关的PPI网络,并扩展ConvGNN方法以整合PPI、蛋白质组学和转录组学数据,提高了分类准确性 | 深度神经网络模型,尤其是图神经网络,在决策过程中难以解释,难以识别对预测贡献最大的特征 | 开发一种结合PPI网络信息和多组学数据的深度学习方法,用于提高COPD的分类准确性 | COPD相关的PPI网络、蛋白质组学和转录组学数据 | 机器学习 | 慢性阻塞性肺疾病 | 卷积图神经网络(ConvGNN) | 卷积图神经网络(ConvGNN) | 蛋白质相互作用网络、蛋白质组学数据、转录组学数据 | 包括COPD病例和对照组的独立转录组学数据集 |
23269 | 2024-08-07 |
Two fully automated data-driven 3D whole-breast segmentation strategies in MRI for MR-based breast density using image registration and U-Net with a focus on reproducibility
2022-Oct-11, Visual computing for industry, biomedicine, and art
DOI:10.1186/s42492-022-00121-4
PMID:36219359
|
研究论文 | 本研究开发了两种基于图像配准和3D U-Net的全自动数据驱动3D全乳房分割策略,用于MRI中的乳腺密度测量,重点关注可重复性 | 提出的图像配准和深度学习全乳房分割方法在乳腺密度测量中表现出高度的准确性和可靠性,优于先前开发的算法和手动分割方法 | NA | 开发一种高度可重复且准确的乳腺密度测量算法 | 乳腺MRI图像的全乳房分割 | 数字病理学 | 乳腺癌 | 图像配准,3D U-Net | U-Net | 图像 | 三个来自两个临床试验的志愿者数据集 |
23270 | 2024-08-07 |
Genomics transformer for diagnosing Parkinson's disease
2022-Sep, ... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics
DOI:10.1109/bhi56158.2022.9926815
PMID:36824448
|
研究论文 | 本文介绍了一种基于transformer编码器的新模型,用于根据基因型数据对帕金森病(PD)患者和健康对照者进行分类 | 该模型能够有效建模复杂的全局特征交互,并通过学习到的注意力分数提高可解释性 | NA | 旨在克服传统评估方法在捕捉基因型数据中复杂交互方面的局限性,提高帕金森病的诊断能力 | 帕金森病患者和健康对照者的基因型数据 | 机器学习 | 帕金森病 | NA | transformer | 基因型数据 | NA |
23271 | 2024-08-07 |
Displacement detection with sub-pixel accuracy and high spatial resolution using deep learning
2022-Jan, Journal of medical ultrasonics (2001)
DOI:10.1007/s10396-021-01162-7
PMID:34837159
|
研究论文 | 本研究旨在使用超声诊断设备实现二维和亚像素位移的高空间分辨率检测 | 本研究开发了一种利用超声图像和输出位移分布的深度学习网络,通过修改FlowNet2网络结构并使用超声图像模拟开发训练数据集,实现了高空间分辨率和亚像素位移检测 | NA | 实现二维和亚像素位移的高空间分辨率检测 | 使用超声诊断设备进行位移检测 | 机器学习 | NA | 深度学习 | FlowNet2 | 图像 | 使用了模拟超声图像和肝脏超声图像进行评估 |
23272 | 2024-08-07 |
Prediction of protein self-interactions using stacked long short-term memory from protein sequences information
2018-12-21, BMC systems biology
DOI:10.1186/s12918-018-0647-x
PMID:30577794
|
研究论文 | 本文开发了一种基于堆叠长短期记忆(SLSTM)神经网络的深度学习模型,用于预测蛋白质自相互作用 | 首次应用深度学习方法预测蛋白质自相互作用,并结合Zernike矩(ZMs)和位置特异性权重矩阵(PSWM)进行特征提取 | NA | 开发一种高效的计算方法来预测蛋白质自相互作用,以弥补传统实验方法的不足 | 蛋白质自相互作用 | 机器学习 | NA | 深度学习 | SLSTM | 序列 | 使用了酵母和人类蛋白质自相互作用数据集 |
23273 | 2024-08-07 |
Automatic seizure detection using three-dimensional CNN based on multi-channel EEG
2018-12-07, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-018-0693-8
PMID:30526571
|
研究论文 | 本文提出了一种基于多通道脑电图(EEG)的三维卷积神经网络(CNN)来自动检测癫痫发作 | 首次尝试应用三维CNN从EEG中检测癫痫发作,提供了一种从多通道EEG信号中同时学习模式的新方法 | NA | 旨在提供一个有效的自动癫痫发作检测系统 | 多通道EEG信号 | 机器学习 | 癫痫 | 三维卷积神经网络(3D CNN) | CNN | 脑电图(EEG)数据 | 13名患者的EEG数据 |
23274 | 2024-08-07 |
Application and progress of artificial intelligence in radiation therapy dose prediction
2024-Jul, Clinical and translational radiation oncology
IF:2.7Q2
DOI:10.1016/j.ctro.2024.100792
PMID:38779524
|
综述 | 本文综述了人工智能在放射治疗剂量预测中的应用和进展,特别是深度学习的进展 | 人工智能在放射治疗中的应用提高了剂量预测的准确性和效率 | 由于参与者和机构之间的知识和经验差异,预测的剂量常常不一致 | 探讨人工智能在放射治疗剂量预测中的应用和进展 | 放射治疗中的剂量预测 | 机器学习 | NA | 深度学习 | DL | NA | NA |
23275 | 2024-08-07 |
Is Risk-Stratifying Patients with Colorectal Cancer Using a Deep Learning-Based Prognostic Biomarker Cost-Effective?
2024-Jun, PharmacoEconomics
IF:4.4Q1
DOI:10.1007/s40273-024-01371-1
PMID:38584239
|
研究论文 | 研究使用基于深度学习的预测生物标志物Histotyping对结直肠癌患者进行风险分层的经济效益 | 开发了基于深度学习的预测方法Histotyping,用于结直肠癌患者的治疗前风险分层 | NA | 评估基于深度学习的预测方法Histotyping在挪威医疗系统中的成本效益 | 结直肠癌II期和III期患者 | 机器学习 | 结直肠癌 | 深度学习 | NA | NA | NA |
23276 | 2024-08-07 |
Automatic classification of spinal osteosarcoma and giant cell tumor of bone using optimized DenseNet
2024-Jun, Journal of bone oncology
IF:3.1Q2
DOI:10.1016/j.jbo.2024.100606
PMID:38778836
|
研究论文 | 本研究旨在探索一种优化的深度学习模型,用于自动分类脊柱骨肉瘤和大细胞骨肿瘤 | 研究采用了具有自注意力机制的优化DenseNet模型,并结合Gradient-weighted Class Activation Mapping (Grad-CAM)技术,提高了分类准确性和特征提取能力 | 未来研究将集中在扩展数据集和改进算法上,以增强模型在不同临床环境中的适用性 | 提供一种可靠的方法,用于在医学影像中区分脊柱骨肉瘤和大细胞骨肿瘤 | 脊柱骨肉瘤和大细胞骨肿瘤的自动分类 | 计算机视觉 | 骨肿瘤 | Gradient-weighted Class Activation Mapping (Grad-CAM) | DenseNet | 图像 | 未具体说明样本数量 |
23277 | 2024-08-07 |
Spatial distance between tumor and lymphocyte can predict the survival of patients with resectable lung adenocarcinoma
2024-May-30, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e30779
PMID:38779006
|
研究论文 | 本研究探讨了肿瘤与淋巴细胞之间的空间距离与可切除肺腺癌患者预后预测的关系 | 提出了一种基于H&E染色全切片图像的深度学习驱动工作流程,自动分割肿瘤区域内的不同细胞类型,并量化肿瘤细胞与淋巴细胞之间的空间距离 | NA | 探索肿瘤细胞与淋巴细胞之间的空间距离与肺腺癌患者预后预测的关系 | 可切除的肺腺癌患者 | 数字病理学 | 肺腺癌 | H&E染色 | HoVer-Net | 图像 | 发现集276例,验证集139例和115例 |
23278 | 2024-08-07 |
Performance assessment of the effective core potentials under the fermionic neural network: First and second row elements
2024-May-28, The Journal of chemical physics
IF:3.1Q1
DOI:10.1063/5.0207853
PMID:38785290
|
研究论文 | 本文评估了在费米神经网络下有效核心势(ECP)的表现,特别是针对第一和第二行的元素 | 首次全面评估了ECP在费米神经网络下的性能,并比较了两种新构建的ECP表(ccECP和eCEPP)的性能 | 全电子计算的高精度受到缺乏相对论效应和某些较重元素中数值不稳定性的限制 | 填补费米神经网络下ECP性能评估的空白,并探索其在未来改进费米神经网络中的潜在方向 | 第一和第二行的元素的原子、光谱和分子性质 | 机器学习 | NA | 神经网络 | 费米神经网络(FermiNet) | 原子、分子数据 | 第一和第二行的元素 |
23279 | 2024-08-07 |
Deep learning application to automated classification of recommendations made by hospital pharmacists during medication prescription review
2024-May-24, American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists
IF:2.1Q3
DOI:10.1093/ajhp/zxae011
PMID:38294025
|
研究论文 | 本文研究了使用深度学习算法自动分类医院药师在药物处方审查过程中提出的改进治疗建议 | 开发了一种基于深度神经网络的自动分类系统,用于处理和分类大量的药师建议数据 | 分类准确率有待进一步提高,且需要更多的数据来验证和改进模型 | 提高药师建议数据的利用效率,以便更好地改进药物处方安全 | 药师在处方审查过程中提出的建议 | 机器学习 | NA | 深度学习 | 深度神经网络 | 文本 | 27,699个标记建议用于训练和评估分类器,4,460个预测用于验证 |
23280 | 2024-08-07 |
Preoperative evaluation of visceral pleural invasion in peripheral lung cancer utilizing deep learning technology
2024-May-23, Surgery today
IF:1.7Q2
DOI:10.1007/s00595-024-02869-z
PMID:38782767
|
研究论文 | 本研究旨在评估人工智能在利用高分辨率计算机断层扫描(HRCT)图像检测肺癌脏层胸膜侵犯(VPI)中的效率 | 本研究首次使用YOLOv4.0进行肿瘤定位,并应用EfficientNetv2进行VPI预测,展示了强大的诊断性能 | 研究为回顾性分析,且样本量有限,可能影响结果的普遍性 | 评估人工智能在肺癌脏层胸膜侵犯检测中的效率 | 472名I期非小细胞肺癌患者的术前HRCT图像 | 计算机视觉 | 肺癌 | 高分辨率计算机断层扫描(HRCT) | EfficientNetv2 | 图像 | 472名患者,500张CT图像 |