本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23381 | 2024-08-07 |
A novel deep learning method to segment parathyroid glands on intraoperative videos of thyroid surgery
2024, Frontiers in surgery
IF:1.6Q2
DOI:10.3389/fsurg.2024.1370017
PMID:38708363
|
研究论文 | 本研究开发了一种新的深度学习方法Video-Trans-U-HRNet,用于在甲状腺手术的术中视频中分割甲状旁腺腺体,并与现有医疗AI方法进行比较 | 本研究引入了一种创新的术中视频方法,用于识别甲状旁腺腺体,强调了AI在手术领域的潜在进步 | NA | 研究目的是探索深度学习是否可以用于辅助识别甲状腺手术中术中视频的甲状旁腺腺体 | 甲状旁腺腺体在甲状腺手术中的识别 | 机器学习 | NA | 深度学习 | Video-Trans-U-HRNet | 视频 | 研究包括50名患者的数据集,包含98个视频和9,944个标注帧,以及一个独立的测试集,包含15个视频和1,500个帧 |
23382 | 2024-08-07 |
Physics-Guided Deep Generative Model for New Ligand Discovery
2023-Sep, ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine
DOI:10.1145/3584371.3613067
PMID:38706556
|
研究论文 | 本文介绍了一种基于物理引导的深度生成模型,用于发现新的配体,该模型不仅考虑了结合位点,还包含了基于物理的特征,描述了受体和配体之间的结合机制 | 该模型创新地结合了物理原理和深度学习,生成的配体结构在结合强度上优于传统方法 | 未来研究方向包括在更大的数据集上训练和测试模型,增加更多基于物理的特征,并从生物物理角度解释深度学习结果 | 旨在通过结合物理原理和深度学习技术,提高新配体发现的效率和质量 | 研究对象包括大型蛋白质-配体复合物和小型宿主-客体系统 | 机器学习 | NA | 深度生成模型 | GAN | 结构数据 | 测试了大型蛋白质-配体复合物和小型宿主-客体系统 |
23383 | 2024-08-07 |
Public mental health through social media in the post COVID-19 era
2023, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2023.1323922
PMID:38146469
|
研究论文 | 本文提出了一种基于微表情识别心理障碍的方法,使用深度学习模型HybridMicroNet进行情感识别 | 提出了一种基于卷积神经网络的深度学习模型HybridMicroNet,用于从微表情中识别情感 | 仅在CASME和SAMM数据集上进行了验证,可能需要更多数据集来验证模型的泛化能力 | 探索通过社交媒体中的微表情自动检测心理障碍的方法 | 心理障碍的自动检测 | 机器学习 | NA | 深度学习 | CNN | 图像 | CASME数据集上的准确率为99.08%,SAMM数据集上的准确率为97.62% |