本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2381 | 2025-04-06 |
LMCBert: An Automatic Academic Paper Rating Model Based on Large Language Models and Contrastive Learning
2025-Mar-31, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3550203
PMID:40168236
|
研究论文 | 本文提出了一种基于大型语言模型和对比学习的自动学术论文评分模型LMCBert | 结合大型语言模型(LLMs)和动量对比学习(MoCo)优化Bert训练,提高学术论文接受预测的准确性 | 模型性能可能受到预训练语料与学术文本差异的影响 | 开发高效且准确的自动学术论文评分方法 | 学术论文 | 自然语言处理 | NA | 大型语言模型(LLMs)、动量对比学习(MoCo) | Bert | 文本 | NA |
2382 | 2025-04-06 |
Applications of AI in Predicting Drug Responses for Type 2 Diabetes
2025-Mar-27, JMIR diabetes
DOI:10.2196/66831
PMID:40146874
|
research paper | 本文探讨了人工智能在预测2型糖尿病药物反应中的应用 | 利用AI技术(包括机器学习和深度学习)分析大规模数据集,以提高药物反应预测的准确性,并倾向于使用集成方法作为首选模型 | 未提及具体的数据集规模或模型性能的局限性 | 预测2型糖尿病患者对降糖药物的反应,以优化治疗方案和实现个性化医疗 | 2型糖尿病患者 | machine learning | diabetes | machine learning, deep learning | ensemble methods | electronic health records, clinical trials, observational studies | NA |
2383 | 2025-04-06 |
DeepTWA-TM: Deep Learning T-Wave Alternans Detection in Ambulatory ECG via Time Analysis
2025-Mar-26, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3553789
PMID:40138221
|
研究论文 | 本研究提出了一种名为DeepTWA-TM的深度学习方法,用于在动态心电图中通过时间分析检测T波交替(TWA) | 该方法利用迁移学习和稳健的架构(如VGG、ResNet和Inception)直接从心电信号中检测TWA,无需先前的信号处理步骤(如R峰识别、T波分割或特征工程) | NA | 开发一种非侵入性标记物,用于评估心源性猝死的风险 | 动态心电图中的T波交替(TWA) | 机器学习 | 心血管疾病 | 深度学习 | VGG, ResNet, Inception | 心电信号 | 来自真实患者的自定义长期数据集,包含从不可见的微交替到20至100μV的高振幅TWA的TWA发作 |
2384 | 2025-04-06 |
A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision
2025-Mar-26, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2025.3554801
PMID:40138241
|
综述 | 本文全面综述了深度学习在体育应用中的算法、数据集、虚拟环境及挑战 | 系统梳理了深度学习在体育表现中的感知、理解和决策三个层次的应用,并总结了当前挑战与未来趋势 | 未涉及具体实验验证或新型算法开发 | 探讨深度学习在体育领域的应用现状与发展方向 | 体育表现中的感知、理解和决策 | 机器学习 | NA | 深度学习 | NA | 视频、传感器数据等 | NA |
2385 | 2025-03-29 |
Unsupervised Test-Time Adaptation for Hepatic Steatosis Grading Using Ultrasound B-Mode Images
2025-Mar-26, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2025.3555180
PMID:40138246
|
研究论文 | 提出一种无监督测试时间适应方法,用于超声B模式图像中的肝脂肪变性分级 | 提出了一种测试时间批量归一化技术,专门针对标签分布变化引起的域偏移,通过调整训练好的CNN模型中批量归一化层的选定特征来实现无监督适应 | 方法仅在两个腹部超声数据集上进行了评估,可能需要更多样化的数据集验证其泛化能力 | 解决超声图像中因临床环境差异导致的域偏移问题,提高肝脂肪变性分级的准确性 | 肝脂肪变性(脂肪肝)的超声B模式图像 | 数字病理学 | 肝病 | 无监督域适应技术 | CNN | 图像 | 两个不同机构收集的腹部超声数据集 |
2386 | 2025-04-06 |
Integrating Single-Molecule Sequencing and Deep Learning to Predict Haplotype-Specific 3D Chromatin Organization in a Mendelian Condition
2025-Mar-20, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.26.640261
PMID:40166185
|
research paper | 该研究提出了一种结合单分子测序和深度学习的模型FiberFold,用于预测单倍型特异性的3D染色质组织 | 结合卷积神经网络和Transformer架构,利用长读长测序数据预测细胞类型和单倍型特异性的3D基因组组织 | NA | 研究3D基因组结构在基因调控和人类疾病中的作用 | 人类单倍型特异性3D染色质组织 | machine learning | Mendelian disease | Fiber-seq, long-read sequencing | CNN, Transformer | multi-omic data | NA |
2387 | 2025-04-06 |
Predicting Task Activation Maps from Resting-State Functional Connectivity using Deep Learning
2025-Mar-19, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.10.612309
PMID:39314460
|
research paper | 使用深度学习从静息态功能连接预测任务激活图 | 复制了最先进的深度学习模型BrainSurfCNN,并探索了两种新的架构改进方法:添加Squeeze-and-Excitation注意力机制(BrainSERF)和使用基于图神经网络的架构(BrainSurfGCN) | 未提及具体局限性 | 推进深度学习在神经影像学中的应用 | 人脑连接组计划(HCP)中的静息态和任务fMRI数据 | 神经影像学 | NA | 深度学习,fMRI | BrainSurfCNN, BrainSERF, BrainSurfGCN | fMRI数据 | 未提及具体样本量 |
2388 | 2025-04-06 |
Predictions from Deep Learning Propose Substantial Protein-Carbohydrate Interplay
2025-Mar-15, bioRxiv : the preprint server for biology
DOI:10.1101/2025.03.07.641884
PMID:40161692
|
research paper | 该研究开发了一种名为PiCAP的新型数据集和神经网络架构,用于预测蛋白质是否非共价结合碳水化合物,并开发了CAPSIF2模型预测与碳水化合物相互作用的蛋白质残基 | 开发了PiCAP和CAPSIF2两个新模型,分别用于预测蛋白质与碳水化合物的结合以及相互作用的残基,性能优于现有模型 | 研究基于已知碳水化合物结合蛋白的数据集,可能无法涵盖所有潜在的相互作用 | 预测蛋白质与碳水化合物的非共价结合及其相互作用位点 | 蛋白质和碳水化合物的相互作用 | machine learning | NA | neural network | PiCAP, CAPSIF2 | protein sequence data | 已知碳水化合物结合蛋白的数据集及三个蛋白质组 |
2389 | 2025-04-06 |
Strategies to include prior knowledge in omics analysis with deep neural networks
2025-Mar-14, Patterns (New York, N.Y.)
DOI:10.1016/j.patter.2025.101203
PMID:40182174
|
综述 | 本文探讨了在深度学习模型中整合先验知识以提高分子谱数据分析性能的策略 | 提出了三种利用先验知识指导深度学习模型处理分子谱数据的主要策略,并回顾了相关深度学习架构,包括图神经网络的新思想 | 未提及具体实施这些策略时的计算资源需求或实际应用中的潜在挑战 | 提高基于分子谱数据的表型预测性能 | 分子谱数据 | 机器学习 | NA | 高通量分子分析技术 | 深度学习模型,图神经网络(GNN) | 分子谱数据 | NA |
2390 | 2025-04-06 |
GREEN: A lightweight architecture using learnable wavelets and Riemannian geometry for biomarker exploration with EEG signals
2025-Mar-14, Patterns (New York, N.Y.)
DOI:10.1016/j.patter.2025.101182
PMID:40182177
|
研究论文 | 介绍了一种名为GREEN的轻量级神经网络架构,用于处理原始EEG数据,结合了小波变换和黎曼几何 | GREEN结合了小波变换和黎曼几何,提供了一种轻量级且可解释的EEG信号处理方法,优于现有非深度学习和大型深度学习模型 | 未提及具体局限性 | 探索EEG信号中的生物标志物,并开发一种轻量级且可解释的神经网络架构 | EEG信号 | 机器学习 | NA | 小波变换和黎曼几何 | GREEN(Gabor Riemann EEGNet) | EEG信号 | 超过5,000名参与者的四个数据集 |
2391 | 2025-04-06 |
Minimizing Human-Induced Variability in Quantitative Angiography for Robust and Explainable AI-Based Occlusion Prediction
2025-Mar-13, ArXiv
PMID:40160450
|
研究论文 | 本研究通过消除定量血管造影中的注射偏差,提高了深度神经网络对颅内动脉瘤闭塞预测的准确性和可解释性 | 提出了一种消除注射偏差的算法,并结合可解释AI(XAI)提高模型预测的可靠性和临床相关性 | 研究仅基于458名患者的血管造影数据,样本量可能不足以覆盖所有临床情况 | 提高颅内动脉瘤闭塞预测的准确性和模型的可解释性 | 接受流动转向器治疗的颅内动脉瘤患者 | 数字病理学 | 颅内动脉瘤 | 定量血管造影(QA) | 深度神经网络(DNN) | 血管造影图像 | 458名患者的血管造影数据 |
2392 | 2025-04-06 |
Diagnostic Accuracy of a Deep Learning Algorithm for Detecting Unruptured Intracranial Aneurysms in Magnetic Resonance Angiography: A Multicenter Pivotal Trial
2025-Mar-12, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2025.123882
PMID:40086726
|
research paper | 评估深度学习算法在磁共振血管造影中检测未破裂颅内动脉瘤的准确性 | 使用3D U-Net模型在TOF MRA数据上实现高灵敏度和低假阳性率的未破裂颅内动脉瘤检测 | 对于小于3毫米的动脉瘤检测灵敏度较低,专家审查仍然必要 | 评估深度学习算法在未破裂颅内动脉瘤检测中的效果,以减轻放射科医生的工作负担 | 675名参与者(189名动脉瘤阳性,486名阴性)的TOF MRA数据 | digital pathology | cardiovascular disease | time-of-flight (TOF) magnetic resonance angiography (MRA) | 3D U-Net | image | 675名参与者(221个未破裂颅内动脉瘤) |
2393 | 2025-04-06 |
MMFmiRLocEL: A multi-model fusion and ensemble learning approach for identifying miRNA subcellular localization using RNA structure language model
2025-Mar-07, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3548940
PMID:40053625
|
研究论文 | 本文提出了一种名为MMFmiRLocEL的多模型融合与集成学习方法,用于识别miRNA的亚细胞定位 | 首次结合序列、结构和功能三种信息进行miRNA亚细胞定位预测,并采用多模型融合与集成学习策略 | 未提及具体样本量或验证数据集规模 | 提高miRNA亚细胞定位预测的准确性和鲁棒性 | miRNA亚细胞定位(MSL) | 生物信息学 | NA | RNA 3D结构预测模型、卷积神经网络、深度残差神经网络 | CNN、ResNet、多模型融合与集成学习 | RNA序列数据、3D结构数据、miRNA-疾病关联网络数据 | NA |
2394 | 2025-04-06 |
CoupleVAE: coupled variational autoencoders for predicting perturbational single-cell RNA sequencing data
2025-Mar-04, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf126
PMID:40178283
|
研究论文 | 提出了一种名为CoupleVAE的新型深度学习方法,用于预测扰动后的单细胞RNA测序数据 | CoupleVAE由两个耦合的VAE组成,通过耦合器在潜在空间中进行更复杂的细胞状态转换,有效预测扰动后的单细胞RNA测序数据 | NA | 预测单细胞扰动响应,以理解生物体的功能和行为 | 单细胞RNA测序数据 | 计算生物学 | NA | 单细胞RNA测序 | VAE (变分自编码器) | RNA测序数据 | 三个真实数据集(感染、刺激和跨物种预测) |
2395 | 2025-04-06 |
DOMSCNet: a deep learning model for the classification of stomach cancer using multi-layer omics data
2025-Mar-04, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf115
PMID:40178281
|
研究论文 | 提出了一种名为DOMSCNet的深度学习模型,用于利用多层组学数据对胃癌进行分类 | 提出了一种混合特征选择(HFS)技术和基于深度循环神经网络的DOMSCNet模型,能够有效处理多层组学数据并提取信息特征 | 未明确提及具体局限性 | 开发一种能够有效分类胃癌的深度学习模型 | 胃癌的多层组学数据 | 数字病理学 | 胃癌 | NGS | 深度循环神经网络(DOMSCNet) | 多层组学数据 | 八个外部数据集 |
2396 | 2025-04-06 |
Data imbalance in drug response prediction: multi-objective optimization approach in deep learning setting
2025-Mar-04, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf134
PMID:40178282
|
研究论文 | 本文提出了一种多目标优化方法,用于解决药物反应预测中的数据不平衡问题,以提高深度学习模型的泛化能力 | 通过构建多目标优化损失函数(Multi-Objective Optimization Regularized by Loss Entropy)并将其应用于深度学习模型,解决了药物反应预测中的数据不平衡问题 | 数据深度仍然不足,与计算机视觉或自然语言处理等领域相比,当前的学习能力有限 | 提高药物反应预测模型的泛化能力 | 小分子药物和肿瘤的生物学特征 | 机器学习 | 癌症 | 深度学习 | 深度学习模型 | 基因组数据和药物筛选数据 | NA |
2397 | 2025-04-06 |
Self-supervised learning improves robustness of deep learning lung tumor segmentation models to CT imaging differences
2025-Mar, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17541
PMID:39636237
|
research paper | 本研究比较了自监督学习(SSL)中wild-pretraining与self-pretraining方法在非小细胞肺癌(NSCLC)3D CT扫描分割中的鲁棒性 | 首次系统比较了wild-pretraining与self-pretraining在医学图像分析中的效果,并发现wild-pretrained Swin模型对CT成像差异具有更好的鲁棒性 | ViT和CNN模型未显示出wild-pretraining的明显优势,研究结果可能受限于特定模型架构 | 比较不同预训练方法对深度学习模型在肺癌CT图像分割中鲁棒性的影响 | 非小细胞肺癌(NSCLC)的3D CT扫描图像 | digital pathology | lung cancer | 3D CT扫描 | CNN, ViT, Swin | 3D医学图像 | 预训练:10,412例3D CT;微调:377例NSCLC患者;测试:早期阶段(公共数据集156例)和晚期阶段(内部数据集196例) |
2398 | 2025-04-06 |
Improving entity recognition using ensembles of deep learning and fine-tuned large language models: A case study on adverse event extraction from VAERS and social media
2025-Mar, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2025.104789
PMID:39923968
|
研究论文 | 本研究评估了大型语言模型和传统深度学习模型在不良事件提取中的效果,并探讨了集成这些模型对性能的影响 | 通过集成微调的传统深度学习模型和大型语言模型,提高了从文本数据中提取COVID-19疫苗接种后不良事件的效果 | 研究样本量相对较小,且仅针对特定类型的不良事件 | 评估大型语言模型和传统深度学习模型在不良事件提取中的效果,并探讨集成方法对性能的提升 | 从VAERS、Twitter和Reddit中提取疫苗、注射和不良事件实体 | 自然语言处理 | COVID-19 | 深度学习、大型语言模型 | RNN、BioBERT、GPT-2、GPT-3.5、GPT-4、Llama-2 7b、Llama-2 13b | 文本 | VAERS报告230份、Twitter帖子3383条、Reddit帖子49条 |
2399 | 2025-04-06 |
Spatial Radiomic Graphs for Outcome Prediction in Radiation Therapy-treated Head and Neck Squamous Cell Carcinoma Using Pretreatment CT
2025-Mar, Radiology. Imaging cancer
DOI:10.1148/rycan.240161
PMID:39982207
|
研究论文 | 开发了一种名为RadGraph的放射组学图框架,用于分析头颈部鳞状细胞癌(HNSCC)患者放疗前CT图像,以预测局部区域复发(LR)和远处转移(DM) | 利用计算图和图注意力深度学习方法全面建模头颈部解剖结构中的多个区域,提高了预测LR和DM的准确性 | 研究为回顾性研究,数据来自公开数据集,可能存在选择偏差 | 提高头颈部鳞状细胞癌患者放疗后局部区域复发和远处转移的预测准确性 | 头颈部鳞状细胞癌(HNSCC)患者 | 数字病理学 | 头颈部鳞状细胞癌 | CT成像 | 图注意力深度学习 | 图像 | 3434名患者(训练集1576人,验证集379人,测试集1479人) |
2400 | 2025-04-06 |
Weakly Aligned Feature Fusion for Multimodal Object Detection
2025-Mar, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2021.3105143
PMID:34437075
|
研究论文 | 提出一种名为AR-CNN的多模态检测器,解决多模态数据中的位置偏移问题,并通过特征融合提升物体检测的准确性和鲁棒性 | 设计了区域特征对齐模块和RoI抖动策略,提出新型多模态特征融合方法,并提供了新的多模态标注数据集KAIST-Paired | 未明确提及方法在极端未对齐情况下的性能表现 | 解决多模态物体检测中的位置偏移问题,提升检测准确性和鲁棒性 | 多模态图像数据(如彩色、热成像和深度图像)中的物体 | 计算机视觉 | NA | 多模态特征融合 | CNN, AR-CNN | 多模态图像(RGB-T, RGB-D) | 在多种2D和3D物体检测数据集上进行了广泛实验 |