深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29582 篇文献,本页显示第 2461 - 2480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2461 2025-07-15
Robust Autism Spectrum Disorder Screening Based on Facial Images (For Disability Diagnosis): A Domain-Adaptive Deep Ensemble Approach
2025-Jun-24, Diagnostics (Basel, Switzerland)
研究论文 本文开发并评估了一种基于面部图像的鲁棒深度集成学习系统,用于准确可靠地分类自闭症谱系障碍(ASD) 创新的ASD-UANet集成方法结合了Xception和ResNet50V2模型,采用加权集成策略(FPPR),显著提高了分类准确性和泛化能力 研究依赖于公开数据集,可能无法涵盖所有人群特征,且未在更广泛的实际临床环境中验证 开发一种鲁棒的ASD筛查方法,以促进更精确的诊断和更大的包容性 自闭症谱系障碍(ASD)患者的面部图像 计算机视觉 自闭症谱系障碍 深度学习 ASD-UANet(Xception和ResNet50V2的集成) 图像 来自Kaggle和YTUIA的两个公开数据集,以及一个未见过的实时数据集(UIFID)
2462 2025-07-15
Clinical Context Is More Important than Data Quantity to the Performance of an Artificial Intelligence-Based Early Warning System
2025-Jun-23, Journal of clinical medicine IF:3.0Q1
研究论文 本研究探讨了基于深度学习的早期预警系统VitalCare-Major Adverse Event Score在预测成人住院患者6小时内非计划转入重症监护室、心脏骤停或死亡方面的能力 研究发现临床背景比数据量对人工智能预警系统性能的影响更大,支持了对数据完整性的细致看法 这是一项回顾性单中心研究,结果可能无法推广到其他医疗环境 评估临床数据缺失模式对AI预警系统性能的影响 成人住院患者 医疗人工智能 多系统疾病 深度学习 VitalCare-Major Adverse Event Score 电子健康记录 未明确提及具体样本量
2463 2025-07-15
Scalable Nuclei Detection in HER2-SISH Whole Slide Images via Fine-Tuned Stardist with Expert-Annotated Regions of Interest
2025-Jun-22, Diagnostics (Basel, Switzerland)
研究论文 本研究提出了一种可扩展的深度学习框架,用于在HER2-SISH全切片图像中进行细胞核检测,以提高诊断效率和一致性 结合预训练的Stardist模型和基于图像处理的注释,并在特定领域数据集上进行微调,显著提高了细胞核检测的准确性和泛化能力 研究仅基于20个全切片图像和100个专家标记区域,样本量相对较小 开发自动化深度学习框架以提高HER2-SISH图像中细胞核检测的准确性和效率 HER2-SISH全切片图像中的细胞核 数字病理学 乳腺癌 深度学习、图像处理 Stardist 图像 20个全切片图像中的100个专家标记区域
2464 2025-07-15
Socializing AI: Integrating Social Network Analysis and Deep Learning for Precision Dairy Cow Monitoring-A Critical Review
2025-Jun-20, Animals : an open access journal from MDPI IF:2.7Q1
综述 本文批判性分析了奶牛行为识别的最新进展,重点介绍了通过整合先进人工智能技术(如transformer模型和多视角跟踪)与社会网络分析(SNA)带来的新方法贡献 提出了创新的方法交叉点,如姿态感知的SNA框架和多摄像头融合技术,并讨论了伦理挑战和数据治理问题 当前应用仍有限,存在遮挡、标注瓶颈、数据集多样性和有限泛化能力等重大挑战 提高奶牛福利和操作效率,推动精准畜牧业的发展 奶牛行为识别与监控 机器学习和计算机视觉 NA 社会网络分析(SNA)、transformer模型、多视角跟踪 CNN、BiLSTM、convLSTM、YOLO、EfficientDet 图像、视频 NA
2465 2025-07-15
Experimental Evaluation and Machine Learning-Based Prediction of Laser Cutting Quality in FFF-Printed ABS Thermoplastics
2025-Jun-20, Polymers IF:4.7Q1
研究论文 本研究通过实验和机器学习方法评估和预测了激光切割FFF打印ABS热塑性塑料的质量 结合传统、集成和深度学习算法,特别是LSTM-GRU模型,实现了对激光切割质量的高精度预测 研究仅限于ABS材料,未涉及其他热塑性塑料 优化3D打印ABS零件的后处理策略,提高聚合物基增材制造的精度和效率 FFF打印的ABS热塑性塑料板 机器学习 NA 激光切割,机器学习 Linear Regression, Support Vector Regression, Extreme Gradient Boosting, Random Forest, LSTM, LSTM-GRU, LSTM-XGBoost 实验数据 45次实验试验
2466 2025-07-15
Histopathology-based Protein Multiplex Generation using Deep Learning
2025-May-28, medRxiv : the preprint server for health sciences
研究论文 提出了一种名为HistoPlexer的深度学习框架,能够直接从标准的H&E组织病理学图像生成空间解析的蛋白质多重图像 使用条件生成对抗网络架构和自定义损失函数,联合预测多种肿瘤和免疫标记物,同时减轻切片间的变异 NA 开发一种成本和时间高效的方法,用于肿瘤微环境表征,以推进精准肿瘤学 转移性黑色素瘤样本和其他癌症类型的像素对齐数据集 数字病理学 黑色素瘤 深度学习 GAN 图像 转移性黑色素瘤样本和不同癌症类型的公开数据集
2467 2025-07-15
Boltz-1 Democratizing Biomolecular Interaction Modeling
2025-May-06, bioRxiv : the preprint server for biology
research paper 介绍Boltz-1,一个开源深度学习模型,用于预测生物分子复合物的3D结构 Boltz-1在模型架构、速度优化和数据处理方面进行了创新,达到了Alphafold3级别的准确性,并引入了Boltz-steering技术来修复模型中的幻觉和非物理预测 未提及具体局限性 推动生物分子相互作用建模的民主化,促进药物发现和蛋白质设计领域的进步 生物分子复合物的3D结构 machine learning NA deep learning Boltz-1 3D结构数据 未提及具体样本数量
2468 2025-07-15
The epigenomic landscape of single vascular cells reflects developmental origin and identifies disease risk loci
2025-May-06, bioRxiv : the preprint server for biology
研究论文 该研究通过单细胞染色质可及性和基因表达谱分析,揭示了血管细胞的表观基因组和转录组景观具有细胞类型和血管部位特异性,并发现部位特异性增强子调控疾病风险的复杂遗传驱动因素 首次在单细胞分辨率上揭示了血管部位特异性表观基因组特征,并整合GWAS数据和深度学习模型预测变异对染色质可及性的影响 研究仅基于健康成年小鼠血管组织,人类样本验证不足 探究血管部位特异性疾病风险的生物学基础 健康成年小鼠三个血管部位的细胞(血管平滑肌细胞、成纤维细胞和内皮细胞) 表观基因组学 心血管疾病 scATAC-seq, scRNA-seq, GWAS, ChromBPNet 深度学习模型ChromBPNet 单细胞表观基因组和转录组数据 三个血管部位的成年小鼠血管组织
2469 2025-07-15
Generating Synthetic Task-based Brain Fingerprints for Population Neuroscience Using Deep Learning
2025-May-05, bioRxiv : the preprint server for biology
研究论文 提出了一种名为DeepTaskGen的深度学习方法,用于从静息态功能磁共振成像(rs-fMRI)数据生成未获取的任务相关对比图 能够从未获取的任务中生成合成任务图像,并在预测人口统计、认知和临床变量方面表现出与真实任务对比图相似或更优的性能 未明确提及具体限制,但可能依赖于rs-fMRI数据的质量和可用性 解决任务功能磁共振成像(tb-fMRI)在人群水平研究中的扩展挑战 人类大脑功能成像数据 神经科学 NA 深度学习 DeepTaskGen 功能磁共振成像(fMRI)数据 超过20,000名来自UK Biobank的个体
2470 2025-07-15
MIST-Explorer: The Comprehensive Toolkit for Spatial Omic Analysis and Visualization of Single-Cell MIST Array Data
2025-May-04, bioRxiv : the preprint server for biology
research paper 介绍了一个名为MIST-Explorer的综合工具包,用于空间组学数据的分析和可视化 开发了一个用户友好的工具包,专门用于处理和分析空间MIST阵列数据,填补了现有工具的空白 未提及具体的使用限制或性能瓶颈 提供一个全面的工具包,以简化和优化空间组学数据的分析和可视化流程 空间MIST阵列数据 digital pathology NA 空间MIST (Multiplex Tagging) StarDist (deep learning-based segmentation) image NA
2471 2025-07-15
Explainable deep learning for identifying cancer driver genes based on the Cancer Dependency Map
2025-May-02, bioRxiv : the preprint server for biology
研究论文 本研究开发了xNNDriver和xAEDriver两种可解释的深度学习模型,用于识别癌症驱动基因和突变模式 结合生物信息学知识开发了监督学习模型xNNDriver和无监督可解释自编码器xAEDriver,能够量化基因作为癌症驱动因子的可能性并揭示突变模式 未明确说明模型在临床样本中的验证情况以及与其他方法的比较结果 开发可解释的深度学习方法来识别癌症驱动基因和突变模式 癌症驱动基因和突变 数字病理学 癌症 深度学习 xNNDriver (监督学习), xAEDriver (自编码器) 基因组依赖分数和突变状态数据 基于Cancer Dependency Map (DepMap)的肿瘤样本
2472 2025-07-15
Accurate and fast segmentation of filaments and membranes in micrographs and tomograms with TARDIS
2025-May-01, bioRxiv : the preprint server for biology
研究论文 介绍了一种名为TARDIS的深度学习框架,用于自动且准确地分割电子显微镜图像中的膜和丝状结构 采用新型几何变换器架构,首次实现了对这些结构的精确实例分割,将注释时间从数月缩短至几分钟 未提及在特定生物分子或应用场景下的性能限制 开发一种快速准确的生物大分子结构分割方法,以促进生物物理定量分析 电子显微镜图像中的膜和丝状结构 计算机视觉 NA 电子断层扫描(ET) Transformer 2D/3D电子显微图像 超过13,000个断层扫描图像
2473 2025-07-15
A Novel Technique for Fluorescence Lifetime Tomography
2025-Apr-16, bioRxiv : the preprint server for biology
研究论文 提出了一种基于深度神经网络的荧光寿命层析成像新技术AUTO-FLI,用于在深层组织中实现3D强度和定量寿命重建 开发了名为AUTO-FLI的深度学习模型,能够在厘米深度实现高散射介质中的3D定量荧光寿命成像 目前仅在模拟小鼠体模上进行实验验证,尚未在真实生物组织中进行广泛测试 解决深层组织中荧光寿命3D成像的技术挑战 高散射介质中的荧光寿命成像 生物医学成像 NA 荧光寿命成像(FLIM) 深度神经网络(DL) 3D成像数据 解剖学精确的小鼠模拟体模
2474 2025-07-15
All-at-once RNA folding with 3D motif prediction framed by evolutionary information
2025-Apr-08, bioRxiv : the preprint server for biology
research paper 介绍了一种名为CaCoFold-R3D的概率语法模型,用于联合预测RNA的3D结构和二级结构 CaCoFold-R3D利用RNA比对中的进化信息可靠地识别规范螺旋(包括假结),并引入了R3D语法,利用螺旋共变约束大部分非共变的RNA 3D模块的定位 NA 开发一种能够预测RNA 3D结构和二级结构的联合概率语法模型 RNA的3D结构和二级结构 computational biology NA probabilistic grammar, evolutionary information CaCoFold-R3D RNA sequence and alignment over fifty known RNA motifs
2475 2025-07-15
Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network
2025-Feb-03, Biomolecules IF:4.8Q1
研究论文 提出了一种基于目标结构的深度学习框架RGTsite,用于改进药物-靶标结合位点的识别 采用残差图Transformer网络(RGTsite)结合1D-CNN和ProtT5预训练模型,融合多模态信息以提升结合位点预测性能 未明确提及数据不平衡问题的具体解决方案或模型在极端不平衡场景下的表现 提升药物-靶标结合位点的识别准确性以加速药物开发流程 蛋白质靶标结构及其结合位点 生物信息学 NA 1D-CNN、ProtT5预训练模型、图Transformer网络(GTN) Residual Graph Transformer Network (RGTsite) 蛋白质序列数据、结构数据及理化性质 多个基准数据集(未明确具体数量)
2476 2025-07-15
A Vessel Bifurcation Landmark Pair Dataset for Abdominal CT Deformable Image Registration (DIR) Validation
2025-Jan-15, ArXiv
PMID:39876932
research paper 该文章介绍了一种用于腹部CT可变形图像配准(DIR)验证的首创基准数据集,包含大量高精度的血管分叉标志点对 首次提供了腹部CT DIR验证的基准数据集,包含高精度的血管分叉标志点对,支持未来算法开发 数据集仅包含30名患者的腹部CT图像,可能不足以覆盖所有临床场景 开发一个用于验证腹部CT可变形图像配准算法的基准数据集 腹部CT图像和血管分叉标志点对 digital pathology NA deep learning, deformable image registration deep learning model CT image 30名患者的腹部CT图像,共1895个标志点对
2477 2025-07-15
Physical and mental health management for the older adult using XGBoost algorithm supported by new media technology: developing personalized health intervention plans using healthcare data from the CLHLS database
2025, Frontiers in public health IF:3.0Q2
研究论文 本研究提出了一种结合新媒体技术的综合数字健康管理平台,旨在为老年人提供个性化的身心健康管理方案 结合LDA主题建模、ResNet50图像特征提取和XGBoost算法,构建多模态健康风险评估模型,并整合区块链技术确保数据安全 研究基于CLHLS数据库数据,可能受限于该数据库的样本覆盖范围和数据类型 开发精准智能的老年人健康管理解决方案,提升慢性病预防和生活质量 中国老年人群体(基于CLHLS数据库) 数字健康 老年疾病 LDA主题建模、ResNet50图像特征提取、XGBoost算法、区块链技术 XGBoost、ResNet50、LDA 多模态数据(文本+图像) 中国老年健康影响因素跟踪调查(CLHLS)数据库数据(具体样本量未说明)
2478 2025-07-15
Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism
2024-Aug, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 本研究揭示了人类异聚体铁蛋白自组装机制的随机性 通过独特设计的质粒合成特定H与L亚基比例的异聚体铁蛋白,结合高分辨率冷冻电镜分析和基于深度学习的氨基酸建模,揭示了异聚体铁蛋白自组装过程中的独特结构特征和H-L异源二聚体的显著偏好性 对铁蛋白微异质性在组织特异性适应过程中的生理意义仍需进一步研究 理解H和L亚基的结构复杂性如何影响它们与细胞机器的相互作用 异聚体铁蛋白 结构生物学 NA 高分辨率冷冻电镜分析、深度学习建模 深度学习 蛋白质结构数据 特定H与L亚基比例的异聚体铁蛋白样本
2479 2025-07-15
A week in the life of the human brain: stable states punctuated by chaotic transitions
2024-Jan-15, Research square
research paper 研究人类大脑在自然行为中的神经动力学,揭示大脑网络形成稳定状态及其与行为和生理的关系 利用深度学习与动态系统方法,首次揭示了大脑网络在自然行为中形成稳定状态并通过混沌过渡探索新状态的机制 研究样本量较小(20人),且仅基于颅内电极记录,可能无法完全代表所有人群 探索人类大脑在自然行为中的神经动力学及其与行为和生理的关系 20名人类受试者在自然行为(社交、使用数字设备、睡眠等)中的大脑活动 神经科学 NA 多电极颅内记录 深度学习 神经电生理数据 20名人类受试者,连续3-12天的记录
2480 2025-07-15
Review of Deep Learning Performance in Wireless Capsule Endoscopy Images for GI Disease Classification
2024, F1000Research
review 本文综述了深度学习在无线胶囊内窥镜图像中用于胃肠道疾病分类的性能 总结了深度学习在无线胶囊内窥镜图像分析中的最新进展,包括迁移学习、注意力机制、多模态学习等 指出了当前深度学习方法在无线胶囊内窥镜图像分析中的挑战和局限性 探讨深度学习在无线胶囊内窥镜图像分析中的研究趋势和未来方向 无线胶囊内窥镜图像 digital pathology gastrointestinal disease deep learning NA image NA
回到顶部