本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2501 | 2025-04-05 |
Construction of a predictive model for the efficacy of anti-VEGF therapy in macular edema patients based on OCT imaging: a retrospective study
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1505530
PMID:40177270
|
研究论文 | 基于OCT影像和深度学习构建预测模型,用于评估抗VEGF治疗黄斑水肿患者的疗效 | 创新性地引入组卷积和多卷积核处理多维特征,结合空间金字塔池化(SPP)提取最有用的特征,并利用ResNet50作为预训练模型进行模型融合 | 研究为回顾性研究,可能存在选择偏倚,且样本量未明确说明 | 开发自动化和高效的方法预测抗VEGF治疗黄斑水肿患者的疗效 | 黄斑水肿患者 | 数字病理 | 黄斑水肿 | OCT成像 | ResNet50结合注意力机制和SPP的深度学习模型 | 图像 | NA |
2502 | 2025-04-05 |
The promise and limitations of artificial intelligence in CTPA-based pulmonary embolism detection
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1514931
PMID:40177281
|
综述 | 本文综述了人工智能在CTPA肺动脉栓塞检测中的应用及其前景与局限性 | 探讨了AI在CTPA图像分析中的能力,特别是在使用深度学习模型检测肺动脉栓塞方面的敏感性和特异性,以及与人类放射科医生的比较 | 算法偏见、可解释性问题以及严格验证的必要性,这些限制了AI在临床实践中的广泛应用 | 研究AI在CTPA肺动脉栓塞检测中的角色,以提高诊断精确性和效率 | CTPA图像中的肺动脉栓塞 | 数字病理学 | 肺动脉栓塞 | 深度学习 | 复杂神经网络 | CTPA图像 | 大型数据集 |
2503 | 2025-04-05 |
A Plantar Pressure Detection and Gait Analysis System Based on Flexible Triboelectric Pressure Sensor Array and Deep Learning
2025-01, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202405064
PMID:39473332
|
研究论文 | 开发了一种基于柔性摩擦电压力传感器阵列和深度学习的足底压力检测与步态分析系统 | 采用柔性、透气、可穿戴的静电纺丝纳米纤维膜作为足底压力传感器,并集成了32个FTPS到智能鞋垫中,实现了高灵敏度和无需外部电源的实时步态检测 | 未提及系统在极端环境下的性能表现或长期使用的耐久性测试 | 开发一种可穿戴、自供电的步态检测系统,用于人体健康评估和疾病早期诊断 | 足底压力与步态分析 | 机器学习 | NA | 静电纺丝纳米纤维膜技术 | LSTM | 压力传感器数据 | 未明确提及样本数量 |
2504 | 2025-04-05 |
Preoperative Ultrasound Radomics to Predict Posthepatectomy Liver Failure in Patients With Hepatocellular Carcinoma
2024-Dec, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
IF:2.1Q2
DOI:10.1002/jum.16559
PMID:39177192
|
研究论文 | 该研究开发了一种基于二维剪切波弹性成像和临床数据的深度学习方法,用于预测慢性乙型肝炎相关肝细胞癌患者术后肝功能衰竭的风险 | 提出了结合双模态超声特征和临床指标的深度学习模型PHLF-Net,采用渐进式训练策略,并在多个独立测试集中验证了其有效性 | 研究样本量相对有限(532例患者),且主要针对慢性乙型肝炎相关肝细胞癌患者 | 开发预测肝细胞癌患者术后肝功能衰竭风险的方法 | 接受肝切除术的肝细胞癌患者 | 数字病理学 | 肝细胞癌 | 二维剪切波弹性成像 | ResNet50 | 超声图像(B模式和弹性成像)及临床指标 | 532例肝细胞癌患者(来自5家医院) |
2505 | 2025-04-05 |
RiceSNP-ABST: a deep learning approach to identify abiotic stress-associated single nucleotide polymorphisms in rice
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae702
PMID:39757606
|
研究论文 | 提出了一种名为RiceSNP-ABST的深度学习模型,用于识别水稻中与非生物胁迫相关的单核苷酸多态性(SNPs) | 开发了一种新的负样本构建策略,提出了四种基于DNA序列片段的特征编码方法,并采用带有残差连接的卷积神经网络进行预测 | 高质量的水稻非生物胁迫相关数据稀缺,可能影响模型的泛化能力 | 开发预测模型以识别水稻中与非生物胁迫相关的SNPs,助力水稻抗性品种的培育 | 水稻中的单核苷酸多态性(SNPs) | 机器学习 | NA | 全基因组关联研究(GWAS) | CNN | DNA序列 | NA |
2506 | 2025-04-05 |
GPS-pPLM: A Language Model for Prediction of Prokaryotic Phosphorylation Sites
2024-11-08, Cells
IF:5.1Q2
DOI:10.3390/cells13221854
PMID:39594603
|
research paper | 介绍了一个名为GPS-pPLM的在线服务器,用于预测原核生物中的磷酸化位点 | 结合了transformer和深度神经网络两种深度学习方法,整合了10种序列特征和上下文特征,构建了针对特定磷酸化残基类型和物种的预测模型 | NA | 预测原核生物中的磷酸化位点 | 原核生物中的磷酸化位点 | natural language processing | NA | transformer, deep neural network | transformer, DNN | protein sequences | 44,839个非冗余磷酸化位点,来自16,041个蛋白质和95种原核生物 |
2507 | 2025-04-05 |
Dynamic modulation of social gaze by sex and familiarity in marmoset dyads
2024-Nov-05, bioRxiv : the preprint server for biology
DOI:10.1101/2024.02.16.580693
PMID:38405818
|
research paper | 开发了一种新框架,用于准确追踪自由活动的普通狨猴的面部特征和三维头部注视方向,研究了性别和熟悉度对狨猴互动社交注视行为的影响 | 结合深度学习计算机视觉工具和三角测量算法,实现了对自由活动狨猴面部特征和头部注视方向的准确追踪,克服了传统实验中头部运动受限的问题 | 研究仅针对狨猴这一特定物种,结果可能无法直接推广到其他灵长类动物 | 研究社交因素(性别和熟悉度)如何影响灵长类动物的注视行为 | 自由活动的普通狨猴 | computer vision | NA | 深度学习计算机视觉工具和三角测量算法 | deep learning-based computer vision tools | video | 狨猴成对组合(具体数量未明确说明) |
2508 | 2025-04-05 |
An All-in-One Array of Pressure Sensors and sEMG Electrodes for Scoliosis Monitoring
2024-11, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202404136
PMID:39115097
|
研究论文 | 开发了一种集成压力传感器和表面肌电电极的一体化阵列,用于脊柱侧弯监测 | 利用分层MXene/壳聚糖/聚二甲基硅氧烷(PDMS)/聚氨酯海绵和MXene/聚酰亚胺(PI)材料开发了一体化传感器阵列,具有高灵敏度和稳定性,并能通过深度学习预测Cobb角 | 未提及长期临床验证结果或大规模患者测试数据 | 改进脊柱侧弯治疗中支具效果的实时监测方法 | 脊柱侧弯患者 | 生物医学工程 | 脊柱侧弯 | MXene复合材料技术、深度学习 | 深度学习模型(未指定具体类型) | 压力数据、肌电信号 | 未明确说明样本数量 |
2509 | 2025-04-05 |
Deep learning of echocardiography distinguishes between presence and absence of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy
2024-Oct-14, Echo research and practice
IF:3.2Q2
DOI:10.1186/s44156-024-00059-8
PMID:39396969
|
研究论文 | 本研究利用深度学习技术分析超声心动图,以区分肥厚型心肌病患者心脏磁共振中晚期钆增强的存在与否 | 结合临床参数和深度学习分析的超声心动图图像,开发了一种优于仅基于临床参数的模型的新方法 | 样本量相对较小(323例),且研究为横断面设计,未进行长期预后评估 | 区分肥厚型心肌病患者心脏磁共振中晚期钆增强的阳性与阴性 | 肥厚型心肌病患者 | 数字病理学 | 心血管疾病 | 心脏磁共振(CMR)和超声心动图 | 深度卷积神经网络(DCNN) | 图像 | 323例肥厚型心肌病患者(训练集273例,测试集50例) |
2510 | 2025-04-05 |
Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia
2024-Oct, Tissue engineering. Part A
DOI:10.1089/ten.TEA.2024.0096
PMID:39041628
|
综述 | 本文综述了人工智能在口腔癌和口腔上皮异型增生中的应用,旨在开发预测性生物标志物 | 利用人工智能方法开发预测口腔上皮异型增生转化为口腔鳞状细胞癌的生物标志物,以及预测口腔鳞状细胞癌死亡率和治疗反应的生物标志物 | 目前尚无可靠的临床、病理、组织学或分子生物标志物来确定口腔上皮异型增生患者的个体风险 | 提高对口腔鳞状细胞癌和口腔上皮异型增生的预测能力,以改善患者生存率 | 口腔鳞状细胞癌(OSCC)和口腔上皮异型增生(OED)患者 | 数字病理学 | 口腔癌 | 多重免疫组织化学、深度学习、表观基因组学 | 深度学习(DL) | 图像、表观遗传数据 | NA |
2511 | 2025-04-05 |
Artificial Intelligence in Metabolomics: A Current Review
2024-Sep, Trends in analytical chemistry : TRAC
DOI:10.1016/j.trac.2024.117852
PMID:39071116
|
综述 | 本文综述了人工智能在代谢组学中的方法与应用,探讨了其在系统生物学和人类健康中的潜力 | 总结了人工智能在代谢组学分析中的多种应用,包括分析检测、数据预处理、生物标志物发现、预测建模和多组学数据整合 | 尽管存在局限性和挑战,但代谢组学与人工智能的结合在提升人类健康方面具有革命性进展的潜力 | 探讨人工智能在代谢组学研究中的方法和应用 | 代谢组学数据及其在系统生物学和人类健康中的应用 | 代谢组学 | NA | 机器学习和深度学习 | NA | 代谢组学数据 | NA |
2512 | 2025-04-05 |
Hybrid-supervised deep learning for domain transfer 3D protoacoustic image reconstruction
2024-Apr-03, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad3327
PMID:38471184
|
research paper | 本研究开发了一种混合监督深度学习方法,用于解决质子声学成像中的有限视角问题,并实现高质量的3D剂量验证 | 提出了一种Recon-Enhance两阶段深度学习方法,结合了transformer网络和3D U-net,采用混合监督训练策略 | 研究仅在前列腺癌患者数据上进行验证,未在其他癌症类型中测试 | 解决质子声学成像中的有限视角问题,提高3D剂量验证的准确性和效率 | 质子声学成像的3D重建和剂量验证 | digital pathology | prostate cancer | protoacoustic imaging | transformer-based network, 3D U-net | acoustic signals, image | 126例前列腺癌患者数据 |
2513 | 2025-04-05 |
Global research evolution and frontier analysis of artificial intelligence in brain injury: A bibliometric analysis
2024-04, Brain research bulletin
IF:3.5Q2
|
研究论文 | 本文通过文献计量可视化分析,探讨了人工智能在脑损伤领域的全球研究演变和前沿分析 | 利用VOSviewer和CiteSpace对1998至2023年的3000篇文献进行可视化分析,揭示了该领域的研究热点和发展趋势 | 研究机构间缺乏合作与交流,且核心研究机构主要集中在发达国家 | 识别人工智能在脑损伤领域的研究热点,明确研究资源 | Web of Science核心数据库中1998至2023年引用的3000篇文章 | 人工智能 | 脑损伤 | 文献计量分析 | 专家系统、机器学习、深度学习 | 文献数据 | 3000篇文章 |
2514 | 2025-04-05 |
Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images
2021-11, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.28908
PMID:34227163
|
research paper | 比较基于直方图和基于图像的算法在超极化气体肺部图像语义分割中的差异 | 首次系统比较了四种基于直方图的分割算法与基于图像的卷积神经网络在超极化气体肺部图像分割中的性能差异 | 研究仅针对模拟数据集进行验证,未在真实临床环境中全面测试 | 评估不同分割算法在超极化气体肺部图像处理中的性能差异 | 超极化129Xe气体肺部图像 | digital pathology | lung cancer | MRI | CNN | image | 80名受试者(29名公共数据集+51名回顾性数据集) |
2515 | 2025-04-04 |
Automated Sleep Staging in Epilepsy Using Deep Learning on Standard Electroencephalogram and Wearable Data
2025-Apr-03, Journal of sleep research
IF:3.4Q2
DOI:10.1111/jsr.70061
PMID:40176726
|
研究论文 | 本研究利用深度学习模型对癫痫患者的夜间睡眠记录进行自动睡眠分期,评估了标准脑电图和可穿戴设备数据的分析效果 | 首次在癫痫患者中结合标准脑电图和可穿戴设备数据,使用深度学习模型进行自动睡眠分期 | 模型对N1期睡眠的敏感性很低,可穿戴设备数据低估了大多数睡眠宏观结构参数的持续时间 | 评估深度学习模型在癫痫患者睡眠分期中的准确性和应用潜力 | 50名癫痫患者的223份夜间睡眠记录 | 数字病理 | 癫痫 | EEG和加速度测量 | 深度学习模型 | 脑电图和可穿戴设备数据 | 50名患者的223份夜间睡眠记录 |
2516 | 2025-04-04 |
CMV2U-Net: A U-shaped network with edge-weighted features for detecting and localizing image splicing
2025-Apr-03, Journal of forensic sciences
IF:1.5Q2
DOI:10.1111/1556-4029.70033
PMID:40177991
|
research paper | 提出了一种名为CMV2U-Net的边缘加权U形网络,用于检测和定位图像拼接 | 设计了能够同时处理两路输入图像的特征提取模块,并采用分层融合方法和通道注意力机制来防止浅层特征数据丢失 | 未明确提及具体局限性 | 提高图像拼接伪造检测和定位的准确性 | 图像拼接伪造区域 | computer vision | NA | deep learning | U-Net (CMV2U-Net) | image | 多个公共数据集(未明确提及具体数量) |
2517 | 2025-04-04 |
Early Colon Cancer Prediction from Histopathological Images Using Enhanced Deep Learning with Confidence Scoring
2025-Apr-03, Cancer investigation
IF:1.8Q3
DOI:10.1080/07357907.2025.2483302
PMID:40178023
|
research paper | 该研究提出了一种名为NalexNet的混合深度学习分类器,用于从组织病理学图像中早期预测结肠癌 | 结合Vahadane染色归一化和Watershed分割进行预处理,采用Teamwork Optimization Algorithm (TOA)进行特征选择,并设计了包含卷积层、普通细胞和减少细胞的NalexNet模型以提高分类精度和计算效率 | 未提及模型在临床实际应用中的验证情况或跨中心数据测试结果 | 开发自动化且计算高效的结肠癌分类系统以辅助病理学家早期诊断 | 结肠癌组织病理学图像 | digital pathology | colon cancer | Vahadane stain normalization, Watershed segmentation, Teamwork Optimization Algorithm (TOA) | hybrid deep-learning classifier (NalexNet with convolutional layers, normal and reduction cells) | histopathological images | NA |
2518 | 2025-04-04 |
Arterial phase CT radiomics for non-invasive prediction of Ki-67 proliferation index in pancreatic solid pseudopapillary neoplasms
2025-Apr-03, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04921-z
PMID:40178588
|
research paper | 本研究利用动脉期CT影像组学特征,开发了一种深度学习模型,用于术前预测胰腺实性假乳头状瘤患者的Ki-67增殖指数水平 | 首次将动脉期CT影像组学特征与深度学习模型结合,用于预测pSPN患者的Ki-67增殖水平,并识别出CTscore和形态学特征作为关键预测因子 | 研究为回顾性设计,样本量相对较小(92例患者),且来自两个医疗中心 | 术前无创预测胰腺实性假乳头状瘤患者的Ki-67增殖水平 | 胰腺实性假乳头状瘤(pSPN)患者 | digital pathology | pancreatic cancer | CT影像组学分析 | 深度学习模型, GBM | CT图像 | 92例经病理确诊的pSPN患者(训练组64例,验证组28例) |
2519 | 2025-04-04 |
Advanced Anticounterfeiting: Angle-Dependent Structural Color-Based CuO/ZnO Nanopatterns with Deep Neural Network Supervised Learning
2025-Apr-02, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c17414
PMID:40072024
|
研究论文 | 本研究提出了一种基于结构颜色的低成本、可大规模生产的防伪图案及简单鉴别算法 | 利用电纺丝技术制造纳米图案,结合CuO和ZnO的溶液生长过程,创造出具有角度依赖性颜色的不可克隆图案,并通过深度学习算法实现高效鉴别 | 需要标准高分辨率相机获取训练图像,可能在某些应用场景中受限 | 开发新一代高效、可扩展的防伪解决方案 | 防伪图案及其鉴别算法 | 计算机视觉 | NA | 电纺丝技术、溶液生长过程、深度学习 | 深度学习算法 | 图像 | NA |
2520 | 2025-04-04 |
Deep Learning-Based Framework for Efficient Design of Multicomponent High Hardness High Entropy Alloys
2025-Apr-02, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c23010
PMID:40114633
|
研究论文 | 提出了一种基于深度学习的框架,用于高效设计多组分高硬度高熵合金 | 结合材料领域知识与数据驱动技术,开发了材料串联嵌入模块与BiLSTM-CRF网络,自动化分析文献并提取数据,采用两阶段设计策略(GA与PSO结合)优化合金系统与成分比例 | 未明确提及实验验证的广泛性或实际应用中的性能稳定性 | 优化多组分高硬度高熵合金的设计过程 | 高熵合金(HEAs) | 机器学习 | NA | 深度学习、遗传算法(GA)、粒子群优化(PSO) | BiLSTM-CRF | 文本、数值数据 | 2698篇论文中提取的8067个数据点,构建的硬度数据集包含13种元素 |