深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26980 篇文献,本页显示第 241 - 260 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
241 2025-06-24
Cellular and subcellular specialization enables biology-constrained deep learning
2025-May-27, bioRxiv : the preprint server for biology
research paper 该研究探讨了生物约束深度学习如何通过细胞和亚细胞特化实现,以模拟大脑中的学习和记忆机制 提出了一种完全符合生物学约束的深度学习算法,模拟了神经元细胞类型和树突区室化信号的特化 模型的生物学约束可能限制了其在更广泛的人工智能应用中的适用性 探索大脑如何通过神经元细胞类型和树突区室化信号协调多层神经回路中的学习 人工神经网络(ANNs)和神经元细胞类型 machine learning NA 深度学习算法 ANN image NA
242 2025-06-24
A pediatric ECG database with disease diagnosis covering 11643 children
2025-May-26, Scientific data IF:5.8Q1
research paper 该研究提出了一个包含11643名0-14岁儿童的心电图数据库,用于心血管疾病的智能诊断 该数据库专注于儿童心血管疾病诊断,填补了现有ECG数据集主要关注成人且缺乏疾病诊断信息的空白 数据仅来自郑州大学第一附属医院的住院儿童,可能无法完全代表所有儿童群体 为儿童心血管疾病的智能诊断提供充足的数据支持 0-14岁儿童的心电图数据 digital pathology cardiovascular disease ECG NA ECG记录 11643名住院儿童,包含14190份儿科ECG记录
243 2025-06-24
Artificial Intelligence Applied to Ultrasound Diagnosis of Pelvic Gynecological Tumors: A Systematic Review and Meta-Analysis
2025-May-08, Gynecologic and obstetric investigation IF:2.0Q2
meta-analysis 本文通过系统综述和荟萃分析评估了人工智能在超声诊断盆腔妇科肿瘤中的应用效果 首次对AI在妇科盆腔肿瘤超声诊断中的研究进行系统性评估,并与现有ADNEX模型进行性能比较 95%的研究存在高偏倚风险,主要源于不恰当的研究纳入标准、缺乏患者级别的训练测试集划分以及未进行校准评估 评估AI模型在超声诊断妇科盆腔肿瘤中的鉴别性能 妇科盆腔肿瘤(卵巢、子宫内膜和子宫肌层病变) 数字病理 妇科肿瘤 超声成像 深度学习模型与基于放射组学的机器学习方法 超声图像 44项研究(40项卵巢病理、3项子宫内膜病理和1项子宫肌层病理研究)
244 2025-06-24
U-Net-Based Prediction of Cerebrospinal Fluid Distribution and Ventricular Reflux Grading
2025-May, NMR in biomedicine IF:2.7Q1
研究论文 本研究探讨了深度学习在预测人类脑部脑脊液分布中的应用,使用了基于U-Net的监督学习模型 利用深度学习预测脑脊液分布,仅需注射后2小时的成像数据即可达到与使用更多后期扫描数据相当的预测效果 研究依赖于特定对比剂(钆基)的MRI扫描,可能不适用于其他类型的脑脊液标记物 预测脑脊液在人类脑部的分布及其与中枢神经系统疾病的关联 人类脑部脑脊液分布及心室反流分级 数字病理学 中枢神经系统疾病 T1加权磁共振成像(MRI) U-Net 图像 NA
245 2025-06-24
Longitudinal Risk Prediction for Pediatric Glioma with Temporal Deep Learning
2025-May, NEJM AI
研究论文 本研究开发了一种自监督的时序深度学习模型,用于分析儿童胶质瘤患者的连续MRI扫描,以提高个体化复发预测的准确性 提出了一种针对纵向医学影像分析的自监督时序深度学习方法,通过训练模型正确分类扫描的时间顺序作为前置任务,进而微调以预测复发风险 研究受限于数据可用性和当前机器学习方法的局限性 提高儿童胶质瘤个体化复发预测的准确性 儿童低级别和高级别胶质瘤患者 数字病理学 胶质瘤 MRI 自监督时序深度学习模型 影像 715名患者的3994次扫描
246 2025-06-24
Trade-offs between machine learning and deep learning for mental illness detection on social media
2025-Apr-25, Scientific reports IF:3.8Q1
研究论文 本研究比较了机器学习和深度学习模型在社交媒体上心理健康状况分类中的性能和适用性 系统评估了多种ML和DL模型在心理健康分类中的性能差异,并提供了基于数据集大小、可解释性需求和计算限制的模型选择建议 研究仅基于中等规模数据集,未探讨极大数据集或小数据集下的表现差异 比较不同建模方法在心理健康状况分类中的性能差异 社交媒体上关于抑郁、焦虑和自杀意念的用户生成文本 自然语言处理 精神疾病 文本分类 logistic regression, random forest, LightGBM, ALBERT, GRU 文本 中等规模数据集(具体数量未提及)
247 2025-06-24
Towards a unified framework for single-cell -omics-based disease prediction through AI
2025-Apr, Clinical and translational medicine IF:7.9Q1
研究论文 提出一个基于AI的统一框架scDisPreAI,用于整合单细胞组学数据以实现疾病和疾病阶段的预测及生物标志物发现 结合单细胞组学数据和AI技术,开发了一个多任务预测框架,能够同时分类疾病身份和疾病阶段,并通过可解释性技术识别关键生物标志物 需要进一步整合多组学数据、标准化协议和前瞻性临床验证以充分发挥其在精准医学中的潜力 开发一个基于AI的统一框架,用于疾病预测和生物标志物发现 单细胞组学数据和疾病预测 机器学习 多种疾病 单细胞组学 深度学习架构或机器学习流程 单细胞组学数据 NA
248 2025-06-24
The benefit of automated sac volume measurements in postoperative endovascular aortic repair surveillance
2025-Mar, Journal of vascular surgery IF:3.9Q1
research paper 本研究探讨了在腹主动脉瘤(AAA)修复术后监测中,自动测量囊体积相较于最大直径评估是否能提供更细致的囊行为信息 首次比较了自动AAA囊体积测量与传统最大直径评估在EVAR术后监测中的差异,发现体积测量能识别更多的囊收缩或增长情况 样本量较小(89例患者),且为回顾性研究 评估自动AAA囊体积测量在EVAR术后监测中的附加价值 接受标准或开窗EVAR治疗的AAA患者 数字病理 心血管疾病 深度学习 Augmented Reality for Vascular Aneurysm 医学影像 89例患者(标准EVAR 46例,开窗EVAR 43例)
249 2025-06-24
MRI-Based Topology Deep Learning Model for Noninvasive Prediction of Microvascular Invasion and Assisting Prognostic Stratification in HCC
2025-Mar, Liver international : official journal of the International Association for the Study of the Liver IF:6.0Q1
研究论文 开发并验证了一种基于MRI拓扑深度学习的模型,用于术前预测肝细胞癌(HCC)的微血管侵犯(MVI)并辅助预后分层 结合拓扑学改进深度学习模型,提高了预测性能和可解释性,并首次在HCC的MVI预测中应用 研究为回顾性设计,可能存在选择偏倚;外部验证集样本量相对较小 开发非侵入性预测HCC微血管侵犯的深度学习模型并验证其预后分层价值 接受手术治疗的HCC患者 数字病理 肝细胞癌 MRI CNN, TopoCNN, TopoCNN+Clinic 医学影像 589例患者(292例病理证实MVI)
250 2025-06-24
Advancing bioinformatics with large language models: components, applications and perspectives
2025-Jan-31, ArXiv
PMID:38259343
review 本文综述了大语言模型(LLMs)在生物信息学中的关键组成部分、应用及未来展望 探讨LLMs在生物信息学问题解决中的潜力,超越其在人类语言建模方面的熟练度 NA 提供LLMs在生物信息学中应用的全面概述,包括基因组学、转录组学、蛋白质组学、药物发现和单细胞分析等领域 大语言模型(LLMs)及其在生物信息学中的应用 生物信息学 NA 自监督或半监督学习 transformer模型 未标记的输入数据 NA
251 2025-06-24
Deep Learning-Enabled Assessment of Right Ventricular Function Improves Prognostication After Transcatheter Edge-to-Edge Repair for Mitral Regurgitation
2025-Jan, Circulation. Cardiovascular imaging
研究论文 本研究利用深度学习模型评估右心室功能,以改善二尖瓣反流患者经导管边缘对边缘修复术后的预后预测 首次使用深度学习模型从标准二维超声心动图视频中预测右心室射血分数,并证明其在预测一年死亡率方面优于传统方法 研究仅基于回顾性多中心注册数据,且仅评估了一年的死亡率 评估深度学习预测的右心室射血分数在严重二尖瓣反流患者经导管边缘对边缘修复术后的预后价值 接受经导管边缘对边缘修复术的严重二尖瓣反流患者 数字病理学 心血管疾病 二维超声心动图 深度学习模型 视频 1154名2017至2023年间接受治疗的患者
252 2025-06-24
Dynamic Prediction of Cardiovascular Death among Old People with Mildly Reduced Kidney Function Using Deep Learning Models Based on a Prospective Cohort Study
2025, Gerontology IF:3.1Q3
research paper 本研究使用深度学习模型动态预测肾功能轻度减退老年人群的心血管死亡风险 采用新型深度学习算法Dynamic DeepHit模型,在纵向研究中实现个体动态生存预测,并证明其优于传统Cox回归和随机生存森林模型 研究人群仅限于中国天津社区的老年人,可能限制结果的普适性 识别肾功能轻度减退老年人群的心血管死亡风险特征,开发更准确的预测模型 12,650名60岁以上肾功能轻度减退(eGFR 45-90 mL/min/1.73 m2)的老年人 machine learning cardiovascular disease NA DeepHit, Dynamic DeepHit, Cox regression, Random Survival Forest 临床随访数据 12,650名社区老年人,随访7年期间838例心血管死亡
253 2025-06-24
Corrigendum: Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
2025, Frontiers in medicine IF:3.1Q1
correction 本文是对先前一篇关于使用深度学习工具自动评估指甲银屑病严重程度的文章的更正 NA NA NA NA NA NA NA NA NA NA
254 2025-06-24
Introducing a Deep Neural Network Model with Practical Implementation for Polyp Detection in Colonoscopy Videos
2025, Journal of medical signals and sensors
research paper 本研究提出了一种用于结肠镜检查视频中息肉检测的深度学习模型,并进行了实际应用验证 采用迁移学习和多任务学习解决标记数据有限的问题,同时实现息肉分类和边界框检测任务 缺乏非息肉图像数据集,需从LDPolyp视频数据集中提取非息肉图像 开发高效、准确且经济的实时息肉检测解决方案 结肠镜检查视频中的息肉 computer vision gastrointestinal lesions deep learning deep neural network video KVASIR-SEG、CVC-CLINIC数据集以及从LDPolyp视频数据集中提取的非息肉图像
255 2025-06-24
Utilizing retinal arteriole/venule ratio to estimate intracranial pressure
2024-11-08, Acta neurochirurgica IF:1.9Q2
研究论文 本研究探讨了利用视网膜动静脉比率(A/V比率)结合眼内压(IOP)在神经重症监护病房(NICU)中无创估计颅内压(ICP)的可行性 首次在NICU环境中结合IOP使用视网膜A/V比率无创估计ICP,并验证了其与高ICP的显著负相关性 图像质量和诊断特异性存在挑战,样本量较小(15例),需更大规模的多中心研究验证 开发无创ICP监测方法以减少侵入性监测的风险 NICU中格拉斯哥昏迷评分≤8的成年患者 数字病理学 神经系统疾病 深度学习算法 混合效应线性回归模型 视频(眼底镜检查视频) 40例入组,15例纳入最终分析
256 2025-06-24
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases
2024-Jul-16, The British journal of dermatology
research paper 本研究开发了一种深度学习方法来自动分类自身免疫性大疱性皮肤病(AIBDs)的直接免疫荧光(DIF)模式,以提高诊断准确性和效率 首次将深度学习技术应用于自身免疫性大疱性皮肤病的DIF图像自动分类,特别是针对细胞间模式(ICP)和线性模式(LP) 样本量相对较小(训练集436张,测试集93张),且存在类别不平衡问题 开发AI算法以自动分类AIBDs的DIF模式,提高诊断准确性和疾病管理效率 自身免疫性大疱性皮肤病(AIBDs)患者的皮肤活检免疫荧光图像 digital pathology autoimmune bullous skin diseases direct immunofluorescence (DIF) CNNs, Swin Transformer image 训练集436张图像,测试集93张图像
257 2025-06-24
Longitudinal risk prediction for pediatric glioma with temporal deep learning
2024-Jun-28, medRxiv : the preprint server for health sciences
研究论文 该研究提出了一种自监督的深度学习方法来分析纵向医学影像,预测儿童胶质瘤的复发风险 提出了一种名为时间学习的深度学习框架,能够利用患者当前和既往的脑部MR影像中的时空信息来预测未来复发 研究仅基于715名患者的3,994次扫描,样本量相对有限,且仅在儿童胶质瘤中进行了验证 提高儿童胶质瘤复发的个体化预测准确性 儿童胶质瘤患者 数字病理 儿童胶质瘤 深度学习 时间学习(Temporal Learning) 医学影像(MRI) 715名患者的3,994次扫描
258 2025-06-24
Predicting the age of field Anopheles mosquitoes using mass spectrometry and deep learning
2024-05-10, Science advances IF:11.7Q1
研究论文 本文提出了一种结合质谱技术和深度学习的方法,用于快速预测野外按蚊的年龄 首次将MALDI-TOF质谱技术与深度学习相结合用于蚊虫年龄预测,并在塞内加尔两个生态点验证了方法的稳定性 研究仅针对按蚊进行,尚未验证在其他蚊种上的适用性 开发更准确的野外蚊虫年龄预测工具以支持疟疾防控 野外采集的按蚊 机器学习 疟疾 MALDI-TOF质谱技术 深度学习模型 质谱数据 251只野外采集的蚊子,共2763个质谱数据
259 2025-06-24
Neural network in food analytics
2024, Critical reviews in food science and nutrition IF:7.3Q1
review 本文综述了神经网络在食品分析领域的应用,包括食品安全、食品识别和组学分析等方面 首次全面概述神经网络在食品分析中的应用,涵盖基础方法、最新进展及挑战 食品科学家友好型界面软件包的缺乏、模型行为难以理解、多源异构数据等问题阻碍了神经网络的扩展 探讨神经网络在食品分析领域的应用潜力及其面临的挑战 食品分析领域的各种应用场景,如食品识别、感官评价、光谱和色谱的模式识别 machine learning NA NN (Neural Network) NA multi-source heterogeneous data NA
260 2025-06-24
Automatic Ploidy Prediction and Quality Assessment of Human Blastocyst Using Time-Lapse Imaging
2023-Sep-02, bioRxiv : the preprint server for biology
研究论文 本文提出了一种名为BELA的深度学习模型,用于自动预测人类囊胚的倍性状态和质量评估,利用延时成像技术优化预测准确性 BELA模型通过多任务学习和延时成像技术,无需胚胎学家主观输入,即可实现高精度的倍性状态预测,其性能与基于胚胎学家手动评分的模型相当 BELA模型不能完全替代植入前遗传学检测(PGT-A),仍需进一步验证其临床适用性 优化体外受精(IVF)过程中胚胎质量评估和染色体异常检测的准确性 人类囊胚 数字病理 生殖健康 延时成像 深度学习模型(BELA) 图像和视频 Weill Cornell数据集中的囊胚样本
回到顶部