本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
241 | 2025-05-14 |
Quantitative Spatial Analysis of Chromatin Biomolecular Condensates using Cryo-Electron Tomography
2024-Dec-31, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.01.626131
PMID:39677698
|
research paper | 该研究通过冷冻电子断层扫描技术分析了染色质生物分子凝聚物的结构,并开发了深度学习分割与新型上下文感知模板匹配相结合的方法来识别凝聚物内密集堆积的分子 | 整合了深度学习分割与新型上下文感知模板匹配技术,改进了染色质凝聚物内部结构的可视化方法 | 方法主要针对生物化学重构的染色质凝聚物,对细胞内的某些凝聚物可能适用性有限 | 研究染色质生物分子凝聚物的形成和功能机制 | 生物化学重构的染色质凝聚物及原位天然染色质的凝聚区域 | 生物物理学 | NA | 冷冻电子断层扫描(cryo-electron tomography)、深度学习分割、上下文感知模板匹配 | 深度学习 | 图像数据 | NA |
242 | 2025-05-14 |
Monitoring Substance Use with Fitbit Biosignals: A Case Study on Training Deep Learning Models Using Ecological Momentary Assessments and Passive Sensing
2024-Dec, AI (Basel, Switzerland)
DOI:10.3390/ai5040131
PMID:40351335
|
研究论文 | 本研究探讨了使用Fitbit生物信号监测物质使用的可行性,并通过深度学习方法进行个性化建模 | 采用参与者特定的CNN模型结合自监督学习(SSL)来检测药物使用,以应对个体间数据异质性问题 | 样本量较小(仅9名参与者),限制了结果在多样化人群中的普适性 | 开发基于可穿戴设备数据的物质使用实时监测系统 | 物质使用障碍患者 | 机器学习 | 物质使用障碍 | 自监督学习(SSL) | 1D-CNN | 生物信号数据 | 9名参与者 |
243 | 2025-05-14 |
Integrating spatial transcriptomics and snRNA-seq data enhances differential gene expression analysis results of AD-related phenotypes
2024-Nov-18, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.11.18.24317499
PMID:39606364
|
research paper | 本研究整合空间转录组学(ST)和单核RNA测序(snRNA-seq)数据,以增强阿尔茨海默病(AD)相关表型的空间信息细胞类型特异性差异基因表达(DGE)分析能力 | 通过深度学习工具CelEry推断snRNA-seq数据的空间位置,结合ST数据,提高了空间信息细胞类型特异性DGE分析的效力,发现了传统方法无法检测到的AD相关基因和通路 | 研究依赖于推断的空间位置信息,可能存在一定误差;样本虽多但均为死后脑组织,可能影响结果的外推性 | 增强阿尔茨海默病相关表型的空间信息细胞类型特异性差异基因表达分析能力 | 436例死后大脑背外侧前额叶皮层(DLPFC)组织的snRNA-seq数据和空间转录组数据 | digital pathology | Alzheimer's disease | spatial transcriptomics (ST), single-nucleus RNA sequencing (snRNA-seq) | linear mixed regression models | gene expression data | 436 postmortem brains from ROS/MAP cohorts |
244 | 2025-05-14 |
Early Multimodal Data Integration for Data-Driven Medical Research - A Scoping Review
2024-08-30, Studies in health technology and informatics
DOI:10.3233/SHTI240837
PMID:39234706
|
综述 | 本文通过范围综述分析了2019年至2024年间21篇关于早期多模态数据整合方法的文献,总结了这些方法的特点及其在数据驱动医学研究中的应用 | 将早期多模态数据整合方法分为四类,并总结了各类方法的特点,为数据驱动医学研究项目中选择最佳方法组合提供了参考 | 主要关注结构性整合,未深入比较早期和晚期多模态数据整合方法,且整合流程通常需要手动优化 | 探讨早期多模态数据整合方法在数据驱动医学研究中的应用和优化 | 21篇关于早期多模态数据整合方法的综述文献 | 数据驱动医学研究 | NA | 多模态数据整合方法,包括基本连接和深度学习等 | NA | 多模态数据 | 21篇综述文献 |
245 | 2025-05-14 |
Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification
2024-Jun-23, ArXiv
PMID:39398214
|
research paper | 评估一种自动深度学习方法在检测腹水并量化肝硬化及卵巢癌患者腹水体积中的性能 | 提出了一种自动深度学习方法来分割和量化腹水体积,并与专家评估结果高度一致 | 研究为回顾性研究,且样本来源仅限于两个机构的数据 | 评估深度学习在腹水体积自动量化中的性能 | 肝硬化及卵巢癌患者的腹水 | digital pathology | liver cirrhosis, ovarian cancer | deep learning | CNN | CT scans | NIH-LC (25例), NIH-OV (166例), UofW-LC (124例) |
246 | 2025-05-14 |
DEEP IMAGE PRIOR WITH STRUCTURED SPARSITY (DISCUS) FOR DYNAMIC MRI RECONSTRUCTION
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/isbi56570.2024.10635579
PMID:40352104
|
research paper | 提出了一种名为DISCUS的自监督深度学习方法,用于动态MRI图像重建,该方法结合了深度图像先验和结构化稀疏性 | DISCUS方法无需指定流形维度,通过鼓励帧特定代码向量的组稀疏性来发现描述帧间时间变化的低维流形 | 未提及具体局限性 | 解决动态MRI中高质量训练数据不足的问题,提高图像重建质量 | 动态MRI图像 | 医学影像处理 | NA | 深度学习,结构化稀疏性 | DISCUS(基于DIP改进的模型) | 动态MRI图像数据 | 模拟Shepp-Logan体模、真实LGE体模数据、5名患者的回顾性欠采样单次LGE数据 |
247 | 2025-05-14 |
Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycle
2024-Apr-27, bioRxiv : the preprint server for biology
DOI:10.1101/2024.04.25.591211
PMID:38712227
|
研究论文 | 本文提出了一种基于深度学习的成像框架,用于定量研究真核微生物的整个生命周期,包括细胞分裂和细胞生长 | 结合微流控培养、卷积神经网络的生命周期阶段特异性分割和新型细胞追踪算法FIEST,通过深度学习视频帧插值增强连续图像中单细胞掩模的重叠 | 目前仅应用于酿酒酵母的性生命周期,尚未广泛验证于其他真核微生物 | 开发定量研究完整真核生命周期的深度学习方法,以更精确地定义微生物生命周期结构 | 真核微生物(以酿酒酵母为例)的性生命周期 | 数字病理学 | NA | 微流控培养、荧光报告系统、高Cdk1活性传感器LiCHI | CNN | 显微镜图像 | NA |
248 | 2025-05-14 |
Deep learning assisted single particle tracking for automated correlation between diffusion and function
2024-Feb-02, Research square
DOI:10.21203/rs.3.rs-3716053/v1
PMID:38352328
|
research paper | 介绍了一种名为DeepSPT的深度学习框架,用于快速高效地解释物体在2D或3D时间上的扩散行为 | DeepSPT框架能够从扩散行为中自动提取功能信息,无需人工干预,且具有高准确性和快速处理能力 | 未提及具体的样本量或实验条件的限制 | 开发一种自动化工具,用于从亚细胞环境中分子和细胞器的扩散行为中提取功能信息 | 分子和细胞器在亚细胞环境中的扩散行为 | machine learning | NA | deep learning | DeepSPT | 2D或3D时间序列数据 | NA |
249 | 2025-05-14 |
Lossless compression-based detection of osteoporosis using bone X-ray imaging
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230238
PMID:38393881
|
research paper | 该研究提出了一种基于深度学习的无损压缩方法,用于通过骨X射线图像检测骨质疏松症 | 提出了一种新的图像处理方法,通过分离感兴趣区域(ROI)和非ROI来减少数据冗余,并结合SVM分类器提高诊断准确性 | 未提及样本多样性和外部验证结果 | 提高骨质疏松症的诊断准确性 | 骨X射线图像 | digital pathology | 骨质疏松症 | 深度学习,X射线成像 | SVM | image | NA |
250 | 2025-05-14 |
Label-free imaging of nuclear membrane for analysis of nuclear import of viral complexes
2023-12, Journal of virological methods
IF:2.2Q3
DOI:10.1016/j.jviromet.2023.114834
PMID:37875225
|
研究论文 | 本文提出了一种利用深度学习模型进行无标记核膜成像的方法,以研究HIV-1病毒复合物的核输入机制 | 利用深度学习模型实现无标记核膜成像,避免了传统荧光标记的挑战,特别是在原代细胞中的应用 | 模型在活细胞中的应用仍需进一步验证,且可能受限于特定细胞类型或条件 | 研究HIV-1病毒复合物在非分裂细胞中的核输入机制 | HIV-1病毒复合物及宿主细胞核膜 | 数字病理学 | HIV感染 | 透射光显微镜,深度学习模型 | 深度神经网络 | 图像 | 未明确说明具体样本数量,但涉及固定细胞和活细胞的成像 |
251 | 2025-05-14 |
Deep learning assisted single particle tracking for automated correlation between diffusion and function
2023-Nov-17, bioRxiv : the preprint server for biology
DOI:10.1101/2023.11.16.567393
PMID:38014323
|
研究论文 | 介绍了一种名为DeepSPT的深度学习框架,用于快速高效地解释细胞内物体在2D或3D时间上的扩散行为 | DeepSPT能够从扩散行为中自动提取功能信息,无需人工干预,准确率高达95%,且处理时间从数周缩短至数秒 | NA | 开发一种自动化工具,用于从细胞内物体的扩散行为中提取功能信息 | 细胞内分子和细胞器的扩散行为 | 计算机视觉 | NA | 光学显微镜 | 深度学习 | 2D或3D时间序列数据 | NA |
252 | 2025-05-14 |
Application of an artificial intelligence-based tool in [18F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma
2023-10, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-023-06339-5
PMID:37493665
|
研究论文 | 本研究验证了一种基于三维深度学习的工具,用于自动化评估多发性骨髓瘤患者骨髓代谢强度的PET/CT图像分析 | 首次应用深度学习工具自动化评估多发性骨髓瘤患者的骨髓代谢强度,并验证其与临床相关参数的相关性 | 样本量较小(35例患者),需要在更大患者队列中进行前瞻性研究进一步验证 | 验证一种自动化评估多发性骨髓瘤患者骨髓代谢强度的PET/CT图像分析方法 | 多发性骨髓瘤患者的PET/CT图像 | 数字病理 | 多发性骨髓瘤 | PET/CT成像 | 深度学习 | 医学影像 | 35例未经治疗的多发性骨髓瘤患者 |
253 | 2025-05-14 |
Protocol for automated multivariate quantitative-image-based cytometry analysis by fluorescence microscopy of asynchronous adherent cells
2023-09-15, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2023.102446
PMID:37453067
|
研究论文 | 本文提出了一种基于荧光显微镜的异步贴壁细胞多变量定量图像细胞术(QIBC)分析协议 | 开发了一个开源的Fiji脚本,整合了基于人工智能的深度学习工具,用于自动核分割,最小化用户调整 | NA | 提供一种高效的多变量定量图像细胞术分析方法 | 异步贴壁细胞 | 数字病理学 | NA | 荧光显微镜 | 深度学习 | 图像 | NA |
254 | 2025-05-14 |
A knowledge-integrated deep learning framework for cellular image analysis in parasite microbiology
2023-09-15, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2023.102452
PMID:37537845
|
research paper | 提出一个知识集成的深度学习框架,用于寄生虫微生物学中的细胞图像分析 | 结合知识表示与深度学习,应用于细胞图像分类、检测和重建任务 | 未提及具体性能指标或对比实验 | 开发一个用于微生物细胞图像分析的深度学习框架 | 寄生虫微生物的细胞图像 | digital pathology | NA | deep learning | CNN | image | NA |
255 | 2025-05-14 |
Decoding biological age from face photographs using deep learning
2023-Sep-12, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.09.12.23295132
PMID:37745558
|
研究论文 | 本研究开发并验证了FaceAge,一个通过深度学习从面部照片估计生物年龄的系统,并评估了其在癌症患者中的临床应用 | 利用深度学习从面部照片中客观、定量地估计生物年龄,并验证其在临床预后和临终决策中的实用性 | 研究主要基于美国和荷兰的癌症患者数据,可能在其他人群或疾病中的适用性有待验证 | 开发一个能够从面部照片中估计生物年龄的深度学习系统,并评估其在临床中的实用性 | 健康个体和癌症患者 | 数字病理学 | 癌症 | 深度学习 | 深度学习系统(FaceAge) | 图像(面部照片) | 58,851名健康个体和6,196名癌症患者 |
256 | 2025-05-14 |
AORTA Gene: Polygenic prediction improves detection of thoracic aortic aneurysm
2023-Aug-25, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.08.23.23294513
PMID:37662232
|
research paper | 该研究利用深度学习测量升主动脉直径,并构建了一个包含110万个变体的多基因评分(AORTA Gene),以提高胸主动脉瘤的检测 | 首次将多基因评分(AORTA Gene)与临床因素结合,显著提高了胸主动脉直径的预测准确性 | 需要更大规模和更多样化的队列来开发更强大和公平的评分 | 提高胸主动脉瘤的检测准确性 | UK Biobank、Mass General Brigham Biobank、Framingham Heart Study和All of Us的参与者 | machine learning | thoracic aortic aneurysm | GWAS、PRScs-auto | deep learning | genomic data、clinical data | UK Biobank 49,939人(训练集39,524人,测试集4,962人)、MGB 5,469人、FHS 1,298人、All of Us 610人 |
257 | 2025-05-14 |
Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning
2020, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-200662
PMID:32651351
|
research paper | 本研究开发了一种基于深度学习的自动检测系统,用于从多层螺旋CT图像中识别活动性肺结核(ATB) | 利用U-Net深度学习算法自动检测和分割ATB病变,并通过图像处理方法将2D病变转化为3D病变 | 研究数据来自单一教学医院,可能影响模型的泛化能力 | 简化活动性肺结核的诊断流程并提高诊断准确性 | 846名患者的CT图像数据集,包括ATB、肺炎和正常病例 | digital pathology | lung cancer | multi-slice spiral CT | U-Net | image | 846名患者(训练集:567例,测试集:279例) |
258 | 2025-05-13 |
The Chest X- Ray: The Ship has Sailed, But Has It?
2025-Jul-01, Journal of insurance medicine (New York, N.Y.)
DOI:10.17849/insm-52-1-21-22.1
PMID:40047110
|
评论 | 探讨胸部X光片(CXR)在深度学习技术背景下是否能为保险承保风险分析增添新价值 | 提出在深度学习技术支持下重新评估CXR在保险风险评估中的潜在价值 | 未提供具体实验数据或案例支持观点 | 评估CXR作为保险承保风险分析工具的现代适用性 | 胸部X光片(CXR)在保险风险评估中的应用 | 数字病理学 | NA | 深度学习 | NA | 医学影像 | NA |
259 | 2025-05-13 |
From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction
2025-Jul, Seminars in cancer biology
IF:12.1Q1
DOI:10.1016/j.semcancer.2025.03.004
PMID:40147701
|
review | 本文探讨了胰腺导管腺癌(PDAC)风险分层的演变,比较了传统流行病学框架与AI驱动的方法 | 提出将AI技术整合到PDAC风险分层中,以动态模型整合多种数据集,发现新的相互作用和风险特征 | 临床转化中的挑战包括数据稀缺、模型可解释性和外部验证 | 开发可扩展的个性化预测工具,以改善PDAC的早期检测和患者预后 | 胰腺导管腺癌(PDAC) | machine learning | pancreatic cancer | genome-wide association studies, polygenic risk scores, radiomics | machine learning, deep learning | genetic, clinical, lifestyle, imaging data | NA |
260 | 2025-05-13 |
Emittance minimization for aberration correction I: Aberration correction of an electron microscope without knowing the aberration coefficients
2025-Jul, Ultramicroscopy
IF:2.1Q2
DOI:10.1016/j.ultramic.2025.114137
PMID:40222084
|
research paper | 该论文提出了一种基于深度学习的电子显微镜像差校正方法,通过最小化束流发射度增长来实现自动校正 | 从加速器物理角度重新定义像差校正问题,提出基于发射度最小化的新方法,并开发了可快速执行的深度学习模型 | 需要依赖高速电子相机进行快速测量,第二部分才展示在线调谐方法 | 开发无需知道像差系数的电子显微镜自动像差校正方法 | 扫描透射电子显微镜(STEM)的电子束 | 电子显微镜技术 | NA | 深度学习 | 深度学习模型 | Ronchigrams图像数据 | NA |