本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2661 | 2026-01-12 |
Novel deep learning CCTA-FFR for detecting functionally significant coronary stenosis: Comparison with iFR
2026-Jan-09, Journal of cardiovascular computed tomography
IF:5.5Q1
DOI:10.1016/j.jcct.2025.12.007
PMID:41519628
|
研究论文 | 本研究评估了一种新型的、基于深度学习的、现场计算的冠状动脉CT血管造影血流储备分数算法(CT-FFR)与有创瞬时无波比(iFR)相比,在检测功能显著性冠状动脉狭窄方面的诊断性能 | 提出并评估了一种新型的、现场计算的深度学习CT-FFR算法(cFFR v6),用于快速、非侵入性地评估冠状动脉狭窄的功能性缺血,并与有创iFR标准进行比较,验证其在CCTA解读中提供即时生理评估的可行性 | 研究为回顾性分析,样本量较小(44例患者,44处病变),需要更大规模的多中心研究来验证结果并明确其临床作用 | 评估一种新型现场深度学习CT-FFR算法在检测功能显著性冠状动脉狭窄方面的诊断性能,并与有创iFR进行比较 | 44例接受临床指征的冠状动脉CT血管造影(CCTA)和有创瞬时无波比(iFR)测量的患者(共44处病变) | 医学影像分析 | 心血管疾病 | 冠状动脉CT血管造影(CCTA),有创瞬时无波比(iFR)测量 | 深度学习 | 医学影像(CCTA图像) | 44例患者,44处病变 | NA | NA | 灵敏度, 特异性, 阳性预测值, 阴性预测值, 准确率, ROC曲线下面积(AUC), 皮尔逊相关系数 | 现场工作站集成算法(提供近实时评估) |
| 2662 | 2026-01-12 |
AI-MDT: an automatic and intelligent multidisciplinary team consultations platform for lung cancer diagnosis
2026-Jan-08, Journal of cancer research and clinical oncology
IF:2.7Q3
DOI:10.1007/s00432-025-06413-5
PMID:41504919
|
研究论文 | 本研究介绍并评估了一个用于肺癌诊断的自动智能多学科团队会诊平台AI-MDT | 开发了一个集成了流程自动化、智能决策支持和诊断辅助三大核心模块的AI-MDT平台,首次将大语言模型、深度学习和计算机视觉技术整合到肺癌MDT工作流中,实现了实时循证知识库和自动病灶检测与特征分析 | 研究仅在单一中国三甲医院实施,样本量(879次会诊,811名患者)相对有限,且为初步疗效评估,缺乏长期随访和多中心验证 | 评估AI-MDT平台在肺癌多学科团队会诊中的临床实用性和初步有效性 | 肺癌患者的诊断流程与多学科团队会诊 | 数字病理 | 肺癌 | 大语言模型,深度学习,计算机视觉 | 深度学习模型 | 医学影像,文本知识库 | 879次会诊,涉及811名患者 | NA | NA | 会诊量,专家时间,数据利用率,AI诊断建议使用次数(852次),决策支持使用次数(744次) | NA |
| 2663 | 2026-01-10 |
Correction: Optimized deep learning for brain tumor detection: a hybrid approach with attention mechanisms and clinical explainability
2026-Jan-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-29967-3
PMID:41507212
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 2664 | 2026-01-12 |
Cross-omics interpretable neural network for discovery of molecular markers in prostate cancer
2026-Jan-08, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种用于前列腺癌分子标志物发现的跨组学可解释神经网络框架 | 提出了一种结合先验生物知识(通路或蛋白质-蛋白质相互作用网络)和可训练掩码层的仿生框架,动态优化预定义生物连接的强度,以增强知识表示和模型可解释性 | 未明确说明模型在其他癌症类型或独立数据集上的泛化能力,也未讨论计算复杂度或训练时间 | 发现介导前列腺癌临床侵袭性表型的分子标志物 | 前列腺癌 | 机器学习 | 前列腺癌 | 多组学数据整合(基因表达、体细胞突变、拷贝数变异) | 神经网络 | 多组学数据 | NA | NA | Cross-omics Interpretable Neural Network (CINN) | F1分数, 准确率, AUC | NA |
| 2665 | 2026-01-12 |
Surface-enhanced Raman scattering (SERS) in antibiotic resistance detection: Advances, challenges, and future perspectives
2026-Jan-08, Colloids and surfaces. B, Biointerfaces
DOI:10.1016/j.colsurfb.2026.115423
PMID:41519006
|
综述 | 本文系统综述了表面增强拉曼散射技术与人工智能结合在抗生素耐药性检测中的最新进展、挑战与未来前景 | 首次系统总结SERS与AI(特别是机器学习和深度学习方法)融合策略在AMR检测中的应用,并探讨其在临床和监测场景的转化潜力 | 作为综述文章,未提出新的实验数据或模型,主要基于现有文献进行分析 | 总结SERS-AI联合策略在抗菌素耐药性检测领域的技术进展,分析不同方法的优劣,并推动该技术在临床转化中的应用 | 耐药性细菌的检测与识别技术 | 自然语言处理, 机器学习 | 细菌感染性疾病 | 表面增强拉曼散射 | 机器学习, 深度学习 | 光谱数据 | NA | NA | NA | 准确性, 效率 | NA |
| 2666 | 2026-01-12 |
A multi-expert deep learning framework with LLM-guided arbitration for multimodal histopathology prediction
2026-Jan-08, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 提出了一种新颖的多专家深度学习框架,利用大型语言模型作为智能仲裁器,整合了基于病理图像的预测模型和基于临床特征的模型,以提升多模态病理学预测的准确性和可解释性 | 首次将大型语言模型作为智能仲裁器引入多模态病理学预测框架,利用其上下文推理和解释能力动态整合来自不同专家模型的见解,解决模型间分歧,并提供透明、合理的决策 | 研究仅在胃癌和乳腺癌两个数据集上进行了验证,需要更多样化的癌症类型和更大规模的数据集来验证其泛化能力 | 开发一个透明、可扩展且可解释的多模态人工智能系统,用于数字病理学中的癌症预测 | 胃癌和乳腺癌的病理学图像及临床信息 | 数字病理学 | 胃癌, 乳腺癌 | NA | CNN, Transformer, LLM | 图像, 文本 | HMU-GC-HE-30K(胃癌数据集,仅病理图像)和BCNB(乳腺癌活检数据集,包含病理图像和临床信息)两个数据集 | NA | CNN, ViT, LLaMA, GPT, Mistral | NA | NA |
| 2667 | 2026-01-12 |
Structured generative modelling of earthquake response spectra with hierarchical latent variables in hyperbolic geometry
2026-Jan-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-29902-6
PMID:41501067
|
研究论文 | 本研究提出了一种基于双曲几何的层次变分自编码器框架,用于生成地震响应谱,以提升地震灾害分析和结构性能评估的准确性 | 利用双曲几何(庞加莱球流形)嵌入层次潜在变量,首次将几何深度学习与地震学建模结合,以显式建模地震记录中的事件间和事件内变异性 | 未明确提及模型在处理极端罕见地震事件或小样本数据时的泛化能力限制 | 开发一种能够生成物理一致地震响应谱的生成模型,以支持地震灾害分析和实时风险缓解 | 地震响应谱(强震动数据) | 机器学习 | NA | NA | HVAE(层次变分自编码器) | 地震记录数据(源参数和场地参数) | NA | NA | 层次变分自编码器(HVAE) | 决定系数(R²) | NA |
| 2668 | 2026-01-12 |
Depression detection from speech data using deep learning-based optimized temporal-frequency-channel attention with interpretable acoustic-prosodic mapping
2026-Jan-06, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.121077
PMID:41506383
|
研究论文 | 本文提出了一种基于深度学习、结合时频通道注意力机制和优化策略的轻量级可解释框架,用于直接从原始语音音频中检测抑郁症 | 提出了结合时频通道注意力单元(TFCA)的轻量级ResNet-18模型,并引入了基于性能反馈自适应调整超参数的POCAII优化策略,增强了模型的可解释性和跨数据集鲁棒性 | 模型在跨语言泛化能力方面的表现未在更多语种上进行验证,且仅使用了两个公开数据集进行评估 | 开发一种无需转录或视觉线索、可直接从原始语音中检测抑郁症的深度学习系统 | 语音录音数据 | 自然语言处理 | 抑郁症 | 语音信号分析,时频分析(频谱图转换) | CNN | 音频 | 两个公开抑郁症语音数据集(DAIC-WOZ和Androids Corpus) | NA | ResNet-18 | 准确率,AUC(受试者工作特征曲线下面积) | NA |
| 2669 | 2026-01-12 |
Automated 3D cephalometry: A lightweight V-net for landmark localization on CBCT
2026-Jan-06, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本研究开发了一种轻量级V-net深度学习模型,用于自动定位CBCT扫描中的16个解剖标志点,以支持正畸临床决策 | 提出了一种轻量级V-net模型,能够在异质性CBCT数据集上实现临床可接受的定位精度,并具有低计算复杂度,适合集成到临床工作流程中 | 未明确提及模型在极端病例或罕见骨骼分类上的性能,且样本量(350例)可能限制进一步泛化 | 开发自动化的三维头影测量方法,减少处理时间和操作者依赖性,以支持正畸临床决策 | 三维锥束CT扫描中的16个预定义解剖标志点 | 计算机视觉 | 正畸相关骨骼分类 | 锥束CT成像 | CNN | 三维医学图像 | 350例手动标注的CBCT扫描,涵盖不同成像系统、患者年龄和骨骼分类 | NA | V-net | 平均定位误差(毫米)、角度测量误差(度)、线性测量误差(毫米)、Bland-Altman分析 | NA |
| 2670 | 2026-01-12 |
Profiler: an open web platform for multi-omics analysis
2026-Jan-02, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf644
PMID:41324558
|
研究论文 | 本文介绍了一个名为Profiler的开源、模块化多组学分析平台,旨在通过统一的数据处理、分析和可视化工具,降低多组学数据分析的门槛 | 开发了一个集成了从数据导入到生存建模全流程的、支持多种组学数据类型(如蛋白质组学、转录组学、脂质组学、脑电图数据)的统一、可扩展且用户友好的开源平台 | 未在摘要中明确说明 | 解决多组学数据分析中工具分散、需要高级计算专业知识以及可重复性和可访问性差的问题,为系统生物学和精准医学研究提供基础 | 多组学数据(如蛋白质组学、转录组学、脂质组学、脑电图数据) | 生物信息学 | NA | 多组学技术 | 机器学习和深度学习 | 多组学数据 | NA | Python, Streamlit | NA | NA | 高性能计算集群(用于网络平台部署) |
| 2671 | 2026-01-12 |
Quantifying the Predictability of Lesion Growth and Its Contribution to Quantitative Resistance Using Field Phenomics
2026-Jan, Phytopathology
IF:2.6Q2
DOI:10.1094/PHYTO-05-25-0187-R
PMID:40758903
|
研究论文 | 本研究利用基于深度学习的图像分析技术,在田间条件下精确追踪小麦叶斑病的病斑生长,以量化病斑生长可预测性及其对数量抗性的贡献 | 首次在田间条件下大规模精确测量单个病斑生长(27,218次测量),并揭示了病斑扩张是小麦对Septoria tritici blotch数量抗性的重要组成部分 | 研究排除了一个异常品种,且发现病斑扩张并非在所有小麦品种中都是数量抗性的关键组分 | 解析叶部病害季节性流行中病斑扩张的作用,并评估其作为数量抗性选择靶标的潜力 | 由Zymoseptoria tritici引起的小麦Septoria tritici blotch病害的6,889个单个病斑 | 数字病理学 | 小麦叶斑病 | 深度学习图像分析 | 深度学习 | 图像 | 6,889个单个病斑,涉及14个小麦品种,跨越两个田间生长季 | NA | NA | 遗传力(h² ≥ 0.40),统计显著性 | NA |
| 2672 | 2026-01-12 |
Novel BDefRCNLSTM: an efficient ensemble deep learning approaches for enhanced brain tumor detection and categorization with segmentation
2026-Jan, Journal of medical engineering & technology
DOI:10.1080/03091902.2025.2555950
PMID:40934072
|
研究论文 | 本文提出了一种新颖的集成深度学习模型BDefRCNLSTM,用于脑肿瘤的检测、分类和分割,以提高诊断准确性和效率 | 提出了一种新的集成深度学习模型BDefRCNLSTM,结合了增强型熵局部二值模式(ELBP)进行特征提取、增强型燕鸥优化(ESTO)算法进行特征选择,以及改进的X-Net模型进行分割 | 未在摘要中明确提及 | 开发一种自动化的脑肿瘤检测、分类和分割方法,以辅助临床诊断 | 脑肿瘤 | 计算机视觉 | 脑肿瘤 | 磁共振成像(MRI) | CNN, LSTM | 图像 | Figshare、Brain MRI和Kaggle数据集 | NA | BDefRCNLSTM, X-Net | 准确率 | NA |
| 2673 | 2026-01-12 |
High-Asymmetry Metasurface: A New Solution for Terahertz Resonance via Active Learning-Augmented Diffusion Model
2026-Jan, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202508610
PMID:40985172
|
研究论文 | 本文提出了一种结合先验知识引导生成模型与物理约束主动学习机制的新方法,用于设计具有高品质因数共振的高不对称性太赫兹超材料 | 提出了一种由先验知识引导、物理约束主动学习机制增强的生成模型,能够仅利用少量经典结构数据生成高性能的高不对称性超材料结构,显著降低了深度学习对大数据集的依赖 | 未明确讨论生成结构在制造工艺上的可行性或实际器件集成时可能面临的挑战 | 开发一种高效设计高性能(高FoM)太赫兹共振超材料的方法,特别是探索传统方法中未充分研究的高不对称性几何结构 | 太赫兹频段的超材料(超表面),具体为具有高不对称性几何结构的设计 | 机器学习 | NA | NA | 扩散模型 | 结构数据(几何设计) | 68个经典结构作为初始训练数据集 | NA | 扩散模型 | 关键共振指标(具体指标未命名,但提及性能提升超过30%) | NA |
| 2674 | 2026-01-12 |
Deep Learning-Powered Nanoplasmonic Biosensing Approach Enables Ultrasensitive Extracellular Vesicles Profiling for Cancer Screening
2026-Jan, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202511337
PMID:40985328
|
研究论文 | 本文提出了一种基于Kolmogorov-Arnold网络(KAN)增强的纳米等离子体超表面芯片(metaEVchip)的生物传感策略,用于血清中超灵敏小细胞外囊泡(sEV)分析,以进行癌症筛查 | 利用KAN驱动的深度学习纳米等离子体生物传感,实现了对多维光谱特征的同时捕获,从而高效处理数据并提高准确性,显著扩展了纳米等离子体超表面在生物传感中的应用 | NA | 开发一种超灵敏的生物传感方法,用于癌症筛查和改善多种恶性肿瘤的临床管理 | 胰腺导管腺癌(PDAC)患者和对照组的血清样本中的小细胞外囊泡(sEV) | 机器学习 | 胰腺癌 | 纳米等离子体超表面技术,全光谱数据分析 | 深度学习,Kolmogorov-Arnold网络(KAN) | 光谱数据 | 600名胰腺导管腺癌(PDAC)患者和1200名对照的血清样本 | NA | Kolmogorov-Arnold网络(KAN) | 曲线下面积(AUC) | NA |
| 2675 | 2026-01-12 |
On artificial crystal structure generation for solving the phase problem with deep learning
2026-Jan-01, Acta crystallographica. Section A, Foundations and advances
DOI:10.1107/S2053273325009428
PMID:41216780
|
研究论文 | 本文讨论了生成人工晶体结构以训练神经网络解决相位问题的方法 | 提出了一种两步法生成人工晶体结构,包括采样晶胞参数和填充原子,并利用数据库数据指导生成分子状片段,显著提升了神经网络在更大晶胞结构上的泛化能力 | NA | 解决晶体学中的相位问题 | 人工晶体结构 | 机器学习 | NA | 晶体结构生成 | 神经网络 | 晶体结构数据 | NA | NA | PhAI | NA | NA |
| 2676 | 2026-01-12 |
Deep Learning-Based Quality Control Using Subcellular RNA Spatial Distribution Patterns for Cell Segmentation in Spatial Transcriptomics Data
2026-Jan, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202500885
PMID:41311019
|
研究论文 | 本文提出了一种基于深度学习的质量控制和细胞分割改进方法,利用RNA亚细胞空间分布模式评估分割细胞质量 | 首次利用RNA亚细胞空间分布模式通过深度神经网络进行细胞分割质量评估,并结合Transformer分割方法自动移除低质量细胞以提升性能 | 未明确说明方法在极端组织密度或复杂病理条件下的泛化能力 | 开发空间转录组学数据中细胞分割的质量控制与增强方法 | 空间转录组学数据中的细胞分割结果 | 数字病理学 | NA | 空间转录组学测序 | 深度神经网络, Transformer | 空间转录组学数据 | 合成数据与真实Stereo-seq数据 | NA | Transformer | NA | NA |
| 2677 | 2026-01-08 |
Commentary on "Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI"
2026-Jan, Korean journal of radiology
IF:4.4Q1
DOI:10.3348/kjr.2025.1307
PMID:41494679
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 2678 | 2026-01-08 |
Response to Commentary on "Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI"
2026-Jan, Korean journal of radiology
IF:4.4Q1
DOI:10.3348/kjr.2025.1444
PMID:41494678
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 2679 | 2026-01-12 |
Evaluating few-shot prompting for spectrogram-based lung sound classification using a multimodal language model
2026-Jan, PLOS digital health
DOI:10.1371/journal.pdig.0001179
PMID:41499578
|
研究论文 | 本研究评估了通用多模态大语言模型GPT-4o在梅尔频谱图肺音分类任务中,使用少样本提示策略相对于零样本提示的性能提升 | 首次将通用多模态大语言模型GPT-4o应用于肺音梅尔频谱图分类,并系统比较了零样本与少样本提示策略的效果 | 模型当前性能尚不足以支持临床部署,分类准确率仍有较大提升空间 | 评估多模态大语言模型在肺音分类任务中的实用性,探索提示策略对性能的影响 | 肺音梅尔频谱图 | 自然语言处理 | 肺病 | 梅尔频谱图转换 | 多模态大语言模型 | 图像(频谱图) | 6898个标注呼吸周期 | NA | GPT-4o | 准确率, 精确率, 召回率, F1分数 | NA |
| 2680 | 2026-01-12 |
Leveraging 3D Molecular Spatial Visual Information and Multi-Perspective Representations for Drug Discovery
2026-Jan, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202512453
PMID:41090528
|
研究论文 | 本文提出了一种深度学习框架,利用3D分子空间视觉信息进行药物发现,通过整合空间信息与传统分子描述符构建统一的多视角表示 | 首次直接从3D分子空间视觉信息中学习,捕获几何、拓扑和立体化学特征,并构建多视角表示以更好地反映分子结构与功能 | 未明确提及具体的数据集规模限制或计算资源需求,可能依赖于特定3D渲染数据的可用性 | 提升药物关联预测的准确性,以加速药物发现过程 | 小分子药物及其与microRNA、其他药物和蛋白质的相互作用 | 机器学习 | NA | 3D分子空间渲染 | 深度学习框架 | 3D空间视觉信息、分子描述符 | NA | NA | NA | NA | NA |