本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2721 | 2025-05-03 |
Deep learning methods for improving the accuracy and efficiency of pathological image analysis
2025 Jan-Mar, Science progress
IF:2.6Q2
DOI:10.1177/00368504241306830
PMID:39814425
|
研究论文 | 本研究提出了一种结合U-Net和EfficientNetV2的深度学习模型,用于提高病理图像分析的准确性和效率 | 开发了一种新的热图生成算法,结合了精细的图像预处理、数据增强策略、集成学习、注意力机制和深度特征融合技术 | NA | 提高病理图像分析的准确性和效率 | 病理图像 | 数字病理 | NA | 深度学习 | U-Net, EfficientNetV2 | 图像 | NA |
2722 | 2025-05-03 |
Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification
2025, Critical reviews in oncogenesis
DOI:10.1615/CritRevOncog.2024056447
PMID:39819432
|
研究论文 | 本文探讨了机器学习在神经母细胞瘤风险预测和分层中的应用及其潜力 | 利用大规模生物和临床数据,机器学习模型能够检测传统方法常忽视的复杂模式,从而实现更个性化的治疗和更好的患者预后 | 数据规模有限、模型可解释性、数据变异性以及临床整合困难等问题阻碍了更广泛的应用 | 通过机器学习改进神经母细胞瘤的早期诊断、风险评估和治疗决策 | 神经母细胞瘤患者 | 机器学习 | 神经母细胞瘤 | 支持向量机、随机森林、深度学习 | SVM、随机森林、深度学习模型 | 生物和临床数据 | NA |
2723 | 2025-05-03 |
UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0314485
PMID:39820190
|
研究论文 | 提出了一种基于全局特征交互和无锚框感知特征调制的无人机目标跟踪方法,以提高跟踪精度和速度 | 在深度互相关操作中进行特征融合,并引入全局注意力机制以增强模型视野范围和特征细化能力,同时设计了无锚框感知特征调制机制以减少计算量并生成高质量锚框 | NA | 提高无人机视角下目标跟踪的精度和速度兼容性 | 无人机视角下的目标跟踪 | 计算机视觉 | NA | 深度学习 | Siamese网络 | 视频流 | UAV123@10fps, UAV20L, DTB70等无人机跟踪数据集 |
2724 | 2025-05-03 |
Automatic classification of mobile apps to ensure safe usage for adolescents
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0313953
PMID:39820808
|
研究论文 | 本文提出了一种利用深度学习技术(特别是注意力卷积神经网络)对移动应用进行分类的创新方法,旨在保护青少年免受不当内容的影响 | 采用基于双向编码器表示变换器嵌入的注意力卷积神经网络(A-CNNs)对移动应用进行分类,该方法在准确率和召回率上优于其他模型 | NA | 确保青少年移动设备使用的安全性,防止他们接触暴力视频、色情内容、仇恨言论和网络欺凌等不当内容 | 移动应用(M-APPs) | 自然语言处理 | NA | 深度学习 | A-CNNs, 双向编码器表示变换器 | 文本 | NA |
2725 | 2025-05-03 |
Deep learning-based skin lesion analysis using hybrid ResUNet++ and modified AlexNet-Random Forest for enhanced segmentation and classification
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0315120
PMID:39820868
|
研究论文 | 本文提出了一种基于深度学习的混合方法,用于皮肤病变的增强分割和分类 | 结合ResUNet++和改进的AlexNet-Random Forest模型,提高了皮肤病变的分割和分类精度 | 仅使用了Ham10000数据集进行验证,可能在其他数据集上的泛化能力有待验证 | 提高皮肤癌早期诊断的准确性和效率 | 皮肤病变图像 | 计算机视觉 | 皮肤癌 | 深度学习 | ResUNet++, AlexNet-Random Forest | 图像 | Ham10000数据集 |
2726 | 2025-05-03 |
Novel deep reinforcement learning based collision avoidance approach for path planning of robots in unknown environment
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0312559
PMID:39821118
|
研究论文 | 提出了一种基于深度强化学习的机器人路径规划碰撞避免方法 | 结合Q学习和深度学习的新型强化学习算法,提高了在复杂环境中的路径规划效率和碰撞避免能力 | 在狭窄通道环境中的收敛速度相对较慢(400次迭代) | 解决机器人在未知环境中的路径规划和碰撞避免问题 | 移动机器人 | 机器学习 | NA | 深度强化学习 | Q-learning | 环境传感器数据 | 在杂乱环境和狭窄通道环境中进行测试 |
2727 | 2025-05-03 |
Investigating the performance of multivariate LSTM models to predict the occurrence of Distributed Denial of Service (DDoS) attack
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0313930
PMID:39823417
|
研究论文 | 本文探讨了多元LSTM模型在预测分布式拒绝服务(DDoS)攻击中的性能 | 比较了多种深度学习模型和传统机器学习模型在DDoS攻击预测中的表现,并证明了LSTM网络在此类时间序列数据中的优越性 | 无法完全避免服务器受到DDoS攻击,只能在一定程度上预防 | 评估不同模型在预测DDoS攻击中的性能 | DDoS攻击的网络流量数据 | 机器学习 | NA | 深度学习、机器学习 | LSTM, DNN, Random Forest, AdaBoost, Gaussian Naive Bayes | 网络流量数据 | 使用CICDDoS2019基准数据集,包含88个特征(其中22个被选用) |
2728 | 2025-05-03 |
Glaucoma detection and staging from visual field images using machine learning techniques
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0316919
PMID:39823435
|
research paper | 本研究探讨了深度学习模型在区分正常与青光眼视野以及从早期到晚期阶段分类青光眼方面的性能 | 使用深度学习模型仅基于模式偏差图进行青光眼分期,并与传统机器学习分类器进行比较 | 样本量相对较小,仅使用了265个模式偏差图和265个数值数据集 | 评估深度学习模型在青光眼检测和分期中的性能 | 119只正常眼和146只青光眼 | machine learning | glaucoma | deep learning, machine learning | ResNet18, VGG16, random forest | image, numerical data | 265 PD plots and 265 numerical datasets from 119 normal and 146 glaucomatous eyes |
2729 | 2025-05-03 |
Field-scale detection of Bacterial Leaf Blight in rice based on UAV multispectral imaging and deep learning frameworks
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0314535
PMID:39823436
|
研究论文 | 本研究提出了一种基于无人机多光谱成像和深度学习框架的水稻细菌性叶枯病田间检测新方法 | 采用U-Net架构与ResNet-101骨干网络,探索三种波段组合(多光谱、多光谱+NDVI、多光谱+NDRE)以实现优越的分割精度,并首次构建了基于无人机的水稻病害数据集 | 研究基于实验稻田接种病害生成的数据集,实际田间复杂环境的适用性有待验证 | 开发准确的水稻细菌性叶枯病田间检测方法以支持灾害补偿评估 | 感染细菌性叶枯病的水稻植株 | 计算机视觉 | 水稻细菌性叶枯病 | 无人机多光谱成像 | U-Net with ResNet-101 backbone | 多光谱图像 | 通过实验稻田病害接种技术自建数据集(具体样本量未说明) |
2730 | 2025-05-03 |
A deep learning approach versus expert clinician panel in the classification of posterior circulation infarction
2025, NeuroImage. Clinical
DOI:10.1016/j.nicl.2025.103732
PMID:39826393
|
research paper | 本研究开发并验证了一种基于深度学习的CTP图像分类方法,用于后循环梗死的诊断,并与专家临床医生的诊断性能进行了比较 | 首次将3D-DenseNet应用于CTP图像的后循环梗死分类,并证明其性能优于专家临床医生的平均诊断水平 | 研究结果可能受到特定临床医生诊断能力的影响,且模型性能提升程度因医生而异 | 开发一种自动化深度学习方法来提高后循环梗死的诊断准确性 | 后循环梗死(POCI)患者 | digital pathology | cardiovascular disease | CTP | 3D-DenseNet | image | 541名患者(来自3541名患者的INSPIRE登记数据) |
2731 | 2025-05-03 |
Multispectral imaging-based detection of apple bruises using segmentation network and classification model
2025-Jan, Journal of food science
IF:3.2Q2
DOI:10.1111/1750-3841.70003
PMID:39832229
|
研究论文 | 提出了一种结合多光谱成像系统和深度学习的方法,用于准确检测苹果的损伤程度和损伤时间 | 改进了DeepLabV3+网络,采用深度可分离卷积和高效通道注意力机制,并替换损失函数为焦点损失,提高了损伤区域分割的准确性;改进DenseNet121,使用余弦退火算法调整学习率,引入压缩-激励注意力机制和高斯误差线性单元激活函数,提高了损伤程度和时间的识别准确率 | NA | 准确检测苹果的损伤程度和损伤时间 | 苹果 | 计算机视觉 | NA | 多光谱成像 | DeepLabV3+, EfficientNetV2, DenseNet121, ShuffleNetV2 | 图像 | 测试集中两种类型的苹果 |
2732 | 2025-05-03 |
Deep learning in neurosurgery: a systematic literature review with a structured analysis of applications across subspecialties
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1532398
PMID:40308224
|
系统文献综述 | 本研究系统综述了深度学习在神经外科实践中的应用,全面了解深度学习在神经外科中的角色 | 提供了深度学习技术在神经外科各亚专科中的具体应用、局限性和未来方向的系统综述 | 深度学习模型在神经外科实践中的整合面临挑战和限制 | 系统评估深度学习在神经外科实践中的应用及其潜力 | 神经外科各亚专科的深度学习应用研究 | 数字病理 | 神经外科相关疾病 | 深度学习 | DL算法 | 视频、图像、CT、MRI和超声数据 | 181篇符合条件的研究文章 |
2733 | 2025-05-03 |
An android-smartphone application for rice panicle detection and rice growth stage recognition using a lightweight YOLO network
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1561632
PMID:40308302
|
研究论文 | 本研究开发了一个基于改进YOLOv8模型的安卓智能手机应用,用于水稻穗检测和生长阶段识别 | 提出了YOLO_ECO模型,通过C2f-Faster-EMA模块、Slim Neck结构和LSCD头部等改进,显著提升了检测效率和精度 | NA | 提高精准田间管理水平以最大化粮食产量 | 水稻穗及其生长阶段(孕穗期、抽穗期和灌浆期) | 计算机视觉 | NA | 深度学习 | YOLO_ECO(改进的YOLOv8) | 图像 | NA |
2734 | 2025-05-03 |
Deep linear matrix approximate reconstruction with integrated BOLD signal denoising reveals reproducible hierarchical brain connectivity networks from multiband multi-echo fMRI
2025, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2025.1577029
PMID:40309655
|
研究论文 | 该论文提出了一种结合多波段多回波fMRI技术和深度线性矩阵近似重建方法(DELMAR)的新策略,用于更准确地描绘人脑的分层功能连接网络 | 整合了多回波BOLD信号去噪和DELMAR方法,无需单独的多回波独立成分分析去噪步骤,提高了分层脑连接网络的重建准确性和可重复性 | 未明确提及具体的研究局限性 | 改进功能磁共振成像技术,以更准确地描绘人脑的分层功能连接网络 | 人脑功能连接网络 | 神经影像学 | 神经和精神疾病 | 多波段多回波fMRI(MBME fMRI) | 深度线性模型(DELMAR) | fMRI数据 | NA |
2735 | 2025-05-03 |
Approach for enhancing the accuracy of semantic segmentation of chest X-ray images by edge detection and deep learning integration
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1522730
PMID:40309721
|
研究论文 | 提出了一种结合边缘检测和深度学习的方法来提高胸部X光图像语义分割的准确性 | 整合了Sobel和Scharr边缘检测滤波器与U-net深度学习架构,显著提升了分割精度 | 未提及对不同设备或不同质量X光图像的泛化能力 | 提高胸部X光图像中解剖结构的分割准确性,以改善心胸疾病的诊断 | 胸部X光图像中的肺、心脏和锁骨 | 计算机视觉 | 心胸疾病 | 边缘检测(Sobel和Scharr滤波器) | U-net | 图像 | NA |
2736 | 2025-05-03 |
EfficientNetB0-Based End-to-End Diagnostic System for Diabetic Retinopathy Grading and Macular Edema Detection
2025, Diabetes, metabolic syndrome and obesity : targets and therapy
DOI:10.2147/DMSO.S506494
PMID:40309724
|
研究论文 | 开发并验证了一种基于深度学习的自动化诊断系统,用于快速准确诊断糖尿病视网膜病变(DR)及其并发症 | 采用EfficientNetB0模型构建端到端诊断系统,实现DR分级和糖尿病黄斑水肿(DME)检测,并通过Grad-CAM增强模型可解释性 | 未提及模型在不同人群或设备采集图像上的泛化能力 | 提高糖尿病视网膜病变诊断的效率和准确性 | 2753名患者的19,031张荧光素血管造影(FFA)图像 | 数字病理学 | 糖尿病视网膜病变 | 荧光素血管造影(FFA) | EfficientNetB0 | 图像 | 19,031张FFA图像(来自2,753名患者) |
2737 | 2025-05-03 |
Corrigendum: Bioinformatic analysis reveals the association between bacterial morphology and antibiotic resistance using light microscopy with deep learning
2025, Frontiers in microbiology
IF:4.0Q2
DOI:10.3389/fmicb.2025.1607769
PMID:40313407
|
correction | 本文是对先前发表的文章的更正 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
2738 | 2025-05-03 |
Psoriasis severity assessment: Optimizing diagnostic models with deep learning
2024-Dec, Narra J
DOI:10.52225/narra.v4i3.1512
PMID:39816098
|
research paper | 本研究评估了深度学习模型在银屑病严重程度自动分类中的应用 | 使用五种改进的深度卷积神经网络(DCNN)进行银屑病严重程度分类,并确定ResNet50为最优模型 | 需要进一步的临床验证和模型优化 | 优化银屑病严重程度的诊断模型 | 银屑病临床图像 | computer vision | psoriasis | deep learning | ResNet50, VGGNet19, MobileNetV3, MnasNet, EfficientNetB0 | image | 1,546张临床图像(1,082张用于训练,463张用于验证和测试) |
2739 | 2025-05-03 |
A deep learning feature importance test framework for integrating informative high-dimensional biomarkers to improve disease outcome prediction
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae709
PMID:39815828
|
research paper | 提出了一种名为HdFIT的深度学习特征重要性测试框架,用于整合高维生物标志物以提高疾病结果预测 | HdFIT框架结合了特征筛选步骤和机器学习模型,能够有效识别关键生物标志物并提高预测准确性 | 框架在高维设置下的性能尚未在所有类型的生物标志物上得到验证 | 提高疾病结果预测的准确性并理解疾病机制 | 行为、临床和高维分子特征 | machine learning | NA | deep learning | deep neural networks | high-dimensional molecular profiles | NA |
2740 | 2025-05-03 |
scGO: interpretable deep neural network for cell status annotation and disease diagnosis
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf018
PMID:39820437
|
research paper | 介绍了一种名为scGO的深度学习框架,用于单细胞RNA测序数据的可解释性细胞状态注释和疾病诊断 | scGO利用稀疏神经网络和基因本体论(GO)的内在生物学关系,显著提高了可解释性并降低了计算成本 | 未明确提及具体局限性 | 开发一种可解释的深度学习模型,用于细胞状态注释和疾病诊断 | 单细胞RNA测序数据 | machine learning | NA | scRNA-seq | deep neural network | RNA-seq data | 多样化的scRNA-seq数据集 |