深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 22799 篇文献,本页显示第 261 - 280 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
261 2025-04-08
Deep generative modeling of temperature-dependent structural ensembles of proteins
2025-Mar-13, bioRxiv : the preprint server for biology
研究论文 本文提出了一种名为aSAM的深度生成模型,用于生成蛋白质的重原子结构集合,并进一步扩展为aSAMt,首个可转移的温度条件生成器 aSAM在潜在空间中建模原子,便于准确采样侧链和主链扭转角分布,aSAMt是首个可转移的温度条件生成器,能够捕捉温度依赖性集合特性 模型在模拟原子细节和纳入环境因素影响方面仍有限制 开发一种深度生成模型,用于生成蛋白质的结构集合,特别是温度依赖性结构集合 蛋白质的结构集合 机器学习 NA 分子动力学(MD), 潜在扩散模型 潜在扩散模型, 自编码器模型 分子动力学模拟数据 大型开放的mdCATH数据集
262 2025-04-08
A Deep Learning Model of Histologic Tumor Differentiation as a Prognostic Tool in Hepatocellular Carcinoma
2025-Mar-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 本研究开发了一种基于深度学习的AI模型,用于量化肝细胞癌(HCC)肿瘤分化的组织学特征并预测癌症相关结果 首次使用AI模型量化HCC肿瘤分化的多个组织学特征,并证明其在预测HCC相关预后方面的优越性 研究样本量较小(99例HCC切除标本),需要更大样本验证 评估AI模型在量化HCC肿瘤分化特征和预测癌症相关结果方面的性能 肝细胞癌(HCC)切除标本 数字病理学 肝细胞癌 深度学习 监督学习AI模型 组织学图像 99例HCC切除标本
263 2025-04-08
Deep learning in single-cell and spatial transcriptomics data analysis: advances and challenges from a data science perspective
2025-Mar-04, Briefings in bioinformatics IF:6.8Q1
综述 本文综述了深度学习在单细胞和空间转录组数据分析中的进展与挑战,并从数据科学的角度进行了系统评价 系统评价了先进的深度学习方法,并整理了来自九个基准的21个数据集来评估58种计算方法的性能 模型性能在不同基准数据集和评估指标间差异显著,高质量标注数据集仍然有限 探讨深度学习如何有效应用于生物、医学和临床环境中的转录组数据分析 单细胞和空间转录组数据 机器学习 NA 单细胞测序、空间转录组学 深度学习 基因表达、表观遗传修饰、代谢物水平、空间位置等多模态数据 21个数据集来自九个基准,涉及数百万细胞
264 2025-04-08
Automated acute skin toxicity scoring in a mouse model through deep learning
2025-Mar, Radiation and environmental biophysics IF:1.5Q3
研究论文 本研究通过先进的成像设置和深度学习,提出了一种在临床前放射治疗试验中自动评估皮肤毒性的新方法 采用两步深度学习框架(目标检测模型和分类模型)进行皮肤毒性评分,减少了观察者间的变异和评估时间 分类模型在特定毒性等级上仍存在挑战,未来需要通过扩展训练数据集来改进系统 开发一种客观且可重复的皮肤毒性评估方法,以解决手动评分方法中的关键缺陷 160只小鼠在质子/电子试验中的右后腿皮肤反应 数字病理学 皮肤毒性 深度学习 目标检测模型和分类模型 图像 160只小鼠,7542张图像
265 2025-04-08
Evaluation of enzyme activity predictions for variants of unknown significance in Arylsulfatase A
2025-Mar, Human genetics IF:3.8Q2
research paper 评估机器学习方法在预测Arylsulfatase A基因未知意义变异(VUS)酶活性方面的表现 由遗传学和编程训练营参与者开发的模型在预测性能上表现优异,且深度学习模型相比简单技术有显著但小幅的性能提升 仅评估了219个错义VUS,样本量相对较小 评估机器学习方法在预测未知意义变异(VUS)功能影响方面的能力 Arylsulfatase A (ARSA)基因中的219个实验验证的错义VUS machine learning NA machine learning, deep learning NA genetic variants 219个错义VUS
266 2025-04-08
Binding mechanism of inhibitors to DFG-in and DFG-out P38α deciphered using multiple independent Gaussian accelerated molecular dynamics simulations and deep learning
2025-Feb, SAR and QSAR in environmental research IF:2.3Q3
研究论文 本研究通过多种独立的Gaussian加速分子动力学模拟、深度学习和MM-GBSA方法,探究了抑制剂与DFG-in和DFG-out P38α的结合机制 结合GaMD模拟、深度学习和MM-GBSA方法,揭示了P38α构象差异对抑制剂结合的影响,并识别了关键功能域 未提及实验验证,仅基于计算模拟 探究P38α抑制剂结合机制,为药物设计提供理论支持 P38α蛋白及其抑制剂SB2、SK8和BMU 计算生物学 多种疾病(未具体说明) Gaussian加速分子动力学(GaMD)、深度学习(DL)、分子力学广义玻恩表面积(MM-GBSA) 深度学习模型(未具体说明) 分子动力学模拟数据 三种抑制剂(SB2、SK8、BMU)与P38α的结合研究
267 2025-04-08
Investigating the intrinsic top-down dynamics of deep generative models
2025-01-22, Scientific reports IF:3.8Q1
research paper 研究深度生成模型的内在自上而下动态,特别是迭代深度信念网络(iDBN)的生成动态 通过从偏置隐藏状态启动生成过程,增加访问吸引子的异质性,并利用'嵌合体状态'增强生成多样数据原型的能力 模型无法在单次生成轨迹中过渡到所有潜在目标状态 探索分层生成模型的自上而下动态及其在持续学习中的应用 迭代深度信念网络(iDBN)和浅层生成模型(单层受限玻尔兹曼机) machine learning NA Hebbian-like learning mechanisms Deep Belief Networks (DBNs), iterative DBN (iDBN), Restricted Boltzmann Machine (RBM) image 包含手写数字和人脸图片的知名数据集
268 2025-04-08
Predicting branch retinal vein occlusion development using multimodal deep learning and pre-onset fundus hemisection images
2025-01-21, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的方法,利用发病前的眼底半切面图像预测分支视网膜静脉阻塞(BRVO)的发生 首次使用U-net模型分割视网膜视盘和血管,并结合多模态深度学习方法来预测BRVO 样本量较小(27只BRVO患眼和81只未患眼),且为回顾性研究,需要更大规模的多中心数据集来提高预测准确性和临床实用性 预测分支视网膜静脉阻塞(BRVO)的发生 分支视网膜静脉阻塞(BRVO)患者和未患病的对照组的眼底半切面图像 数字病理学 视网膜疾病 深度学习 U-net 图像 27只BRVO患眼和81只未患眼(27只对侧眼和54只同侧未患眼)
269 2025-04-08
Predictive models for posttransplant diabetes mellitus in kidney transplant recipients using machine learning and deep learning approach: a nationwide cohort study from South Korea
2025-01-09, Kidney research and clinical practice IF:2.9Q1
研究论文 本研究利用机器学习和深度学习方法预测肾移植受者术后糖尿病(PTDM)的风险 首次在全国性队列研究中应用多种机器学习和深度学习模型预测PTDM,并比较其性能 研究仅基于韩国器官移植注册数据,可能不适用于其他人群 预测肾移植受者术后糖尿病的风险 肾移植受者 机器学习 糖尿病 机器学习、深度学习 XGBoost, CatBoost, light gradient boosting machine, logistic regression 临床数据 3,213名肾移植受者
270 2025-04-08
Synthetic temporal bone CT generation from UTE-MRI using a cycleGAN-based deep learning model: advancing beyond CT-MR imaging fusion
2025-Jan, European radiology IF:4.7Q1
研究论文 本研究开发了一种基于CycleGAN的深度学习模型,用于从超短回波时间磁共振成像(MRI)扫描生成合成颞骨计算机断层扫描(CT)图像 使用CycleGAN模型从MRI生成合成CT图像,解决了MRI在颞骨解剖标志定位上的固有局限性 对于五个主要解剖结构的生成成功率较低(24%至83%) 开发一种深度学习模型,以生成合成颞骨CT图像,克服MRI在颞骨解剖标志定位上的局限性 颞骨MRI和CT图像 数字病理学 NA 点状编码时间减少与径向采集(PETRA)MRI CycleGAN 图像 102名患者(训练数据集54名,验证数据集48名)
271 2025-04-08
Deep learning-based 3D quantitative total tumor burden predicts early recurrence of BCLC A and B HCC after resection
2025-Jan, European radiology IF:4.7Q1
研究论文 本研究评估了基于深度学习的自动化三维定量肿瘤负荷在MRI上预测肝细胞癌术后早期复发的潜力 首次使用深度学习辅助的自动化三维定量肿瘤负荷作为预测肝细胞癌术后早期复发的生物标志物,并改进了BCLC A和B期患者的亚分类 单中心回顾性研究,样本量有限(592例患者) 预测肝细胞癌(HCC)术后早期复发(ER) 接受切除术的BCLC A和B期肝细胞癌患者 数字病理学 肝细胞癌 MRI 深度学习 医学影像 592例患者(525例BCLC A期,67例BCLC B期)
272 2025-04-08
The value of deep learning-based X-ray techniques in detecting and classifying K-L grades of knee osteoarthritis: a systematic review and meta-analysis
2025-Jan, European radiology IF:4.7Q1
meta-analysis 本文通过系统综述和荟萃分析评估了基于深度学习的X射线技术在检测和分类膝关节骨关节炎K-L分级中的价值 首次对深度学习在膝关节骨关节炎K-L分级中的敏感性进行了全面的荟萃分析 对于K-L1和K-L2分级的敏感性仍需提高,且需要更多研究数据支持临床实践 评估深度学习技术在膝关节骨关节炎X射线诊断中的敏感性和临床价值 膝关节骨关节炎的X射线图像 digital pathology geriatric disease deep learning NA image 62,158张X射线图像(包括22,388张K-L0,13,415张K-L1,15,597张K-L2,7,768张K-L3和2,990张K-L4)
273 2025-04-08
Deep learning in pulmonary nodule detection and segmentation: a systematic review
2025-Jan, European radiology IF:4.7Q1
系统性综述 本文系统性地综述了深度学习在肺结节检测和分割中的应用 填补了现有文献中的方法学空白和偏见,并强调了标准化数据处理和代码共享的重要性 仅包含九项符合纳入标准的研究,可能存在样本量不足的问题 比较使用深度学习技术的肺结节检测和分割方法 肺结节 计算机视觉 肺癌 深度学习 CNN 医学影像 九项研究,主要使用公共数据集如Lung Image Database Consortium Image Collection和Image Database Resource Initiative
274 2025-04-08
P253 Next-generation phenotyping facilitates the identification of structural brain malformations in rare disorders through computational brain MRI analysis
2025, Genetics in medicine open
研究论文 本研究提出了一种基于深度学习的下一代表型分析(NGP)方法,用于检测脑部结构畸形及其相关疾病,为临床医生提供诊断支持 首次将NGP应用于脑部MRI数据,通过大规模脑部MRI图像数据集学习模式,识别结构性畸形 初步分析仅针对两种特定疾病,需要扩展到更广泛的遗传疾病谱 开发一种能够识别罕见疾病中脑部结构畸形的计算方法 罕见疾病中的脑部结构畸形 数字病理学 神经发育疾病 MRI ResNet-50 图像 413张脑部MRI图像,涵盖56种不同疾病
275 2025-04-08
Rapid response to fast viral evolution using AlphaFold 3-assisted topological deep learning
2024-Nov-19, ArXiv
PMID:39606716
研究论文 提出一种结合AlphaFold 3和多任务拓扑拉普拉斯策略的方法,用于快速响应病毒快速进化 结合AlphaFold 3和多任务拓扑拉普拉斯策略,提高预测病毒突变对结合自由能变化的准确性 与使用实验结构相比,性能略有下降(Pearson相关系数平均下降1.1%,均方根误差平均增加9.3%) 快速响应病毒快速进化,优化病毒追踪、诊断和抗体及疫苗设计 SARS-CoV-2刺突蛋白受体结合域(RBD)和人血管紧张素转换酶-2(ACE2)复合物 机器学习 传染病 拓扑深度学习(TDL)、深度突变扫描(DMS)、拓扑数据分析(TDA) 多任务拓扑拉普拉斯(MT-TopLap) 蛋白质-蛋白质相互作用(PPI)复合物结构数据 四个实验性DMS数据集,包括SARS-CoV-2 HK.3变体DMS数据集
276 2025-04-08
MultiSC: a deep learning pipeline for analyzing multiomics single-cell data
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
research paper 提出了一种名为MultiSC的深度学习流程,用于分析多组学单细胞数据 开发了一个新的流程MultiSC,利用多模态约束自编码器和基于矩阵分解的模型来整合多组学数据并预测转录因子调控的靶基因 未提及具体的数据处理或模型性能限制 解决多组学单细胞数据整合和分析工具缺乏的问题 多组学单细胞数据,包括基因表达、染色质可及性和转录因子蛋白表达 machine learning NA NEAT-seq multimodal constraint autoencoder, matrix factorization-based model (scMF), multivariate linear regression models multiomics single-cell data 未提及具体样本数量
277 2025-04-08
Deep learning for intracranial aneurysm segmentation using CT angiography
2024-Jul-26, Physics in medicine and biology IF:3.3Q1
研究论文 本研究采用两阶段深度学习方法,在计算机断层扫描血管造影图像中准确检测小动脉瘤(4-10毫米大小) 提出了一种轻量级且快速的头部区域选择(HRS)算法和自适应的3D nnU-Net网络,用于分割动脉瘤,并将推理时间减少了50%以上 未提及 准确检测和分割小动脉瘤 计算机断层扫描血管造影图像中的小动脉瘤 计算机视觉 心血管疾病 计算机断层扫描血管造影(CTA) 3D nnU-Net 图像 956名患者来自6家医院和一个公共数据集,使用6台不同制造商的CT扫描仪获取
278 2025-04-08
Evaluation of enzyme activity predictions for variants of unknown significance in Arylsulfatase A
2024-Jun-17, bioRxiv : the preprint server for biology
research paper 评估机器学习方法在预测未知意义变异(VUS)对芳基硫酸酯酶A(ARSA)基因功能影响方面的性能 一项由遗传学和编程训练营参与者开发的模型在预测性能上表现最佳,且深度学习方法的预测性能有显著提升 研究中仅使用了219个实验验证的错义VUS,样本量可能有限 评估机器学习方法在预测VUS功能影响方面的准确性及其在遗传和临床研究中的潜在应用 芳基硫酸酯酶A(ARSA)基因中的219个错义VUS machine learning NA machine learning, deep learning NA genetic variants 219个实验验证的错义VUS
279 2025-04-08
Critical assessment of missense variant effect predictors on disease-relevant variant data
2024-Jun-08, bioRxiv : the preprint server for biology
研究论文 评估错义变异效应预测工具在疾病相关变异数据上的性能 通过CAGI6挑战赛评估多种错义变异效应预测工具,包括临床遗传学社区常用工具和最新开发的深度学习方法,并探讨了不同临床和研究应用场景下的性能表现 评估数据集中可能存在标签不平衡问题,且某些预测工具在区分致病性变异和极罕见良性变异时性能下降 评估错义变异效应预测工具的临床和研究实用性,并为未来改进提供方向 错义变异效应预测工具 生物信息学 遗传病 深度学习 NA 基因组数据 来自疾病相关数据库的罕见错义变异数据集
280 2025-04-08
Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals
2022-07, Neuroinformatics IF:2.7Q3
研究论文 介绍了一种深度学习架构,用于评估来自40名癫痫患者的多模态脑电图(EEG)和功能性近红外光谱(fNIRS)记录 首次展示了在静息状态下的人类癫痫大脑中,基于EEG频率振荡的功率谱幅度调制,从编码的神经数据(EEG)预测脑血流动力学(fNIRS)的可能性 研究仅限于癫痫患者,样本量为40人 研究EEG信号如何解码fNIRS信号,预测脑血流动力学 40名癫痫患者的EEG和fNIRS记录 机器学习 癫痫 功能性近红外光谱(fNIRS)和脑电图(EEG) LSTM和CNN集成的多模态序列到序列自编码器 EEG和fNIRS信号 40名癫痫患者
回到顶部