深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29666 篇文献,本页显示第 2801 - 2820 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2801 2025-07-12
An Automated Multi-scale Feature Fusion Network for Spine Fracture Segmentation Using Computed Tomography Images
2024-Oct, Journal of imaging informatics in medicine
研究论文 本文提出了一种新颖的多尺度特征融合深度学习模型,用于自动化脊柱骨折分割 提出了一种包含六个模块的多尺度特征融合深度学习模型,用于改进脊柱骨折的自动分割 未提及具体的数据集大小或实验的临床验证范围 提高脊柱骨折在CT图像中的自动分割准确性 脊柱骨折 计算机视觉 脊柱骨折 深度学习 多尺度特征融合网络 CT图像 NA
2802 2025-07-12
Improved Dementia Prediction in Cerebral Small Vessel Disease Using Deep Learning-Derived Diffusion Scalar Maps From T1
2024-09, Stroke IF:7.8Q1
研究论文 本研究开发了一种深度学习模型,用于从T1图像合成扩散张量成像(DTI)衍生的标量图(FA和MD),以提高脑小血管病中痴呆的预测准确性 提出了一种快速且可推广的方法,从常规T1图像合成FA/MD图,无需获取耗时的DTI数据,从而提高了痴呆预测的准确性 在SCANS数据集上的合成FA图的结构相似性指数较低(>0.80),可能影响预测效果 提高脑小血管病中痴呆的预测准确性 脑小血管病患者及正常对照 数字病理学 脑小血管病 深度学习、扩散张量成像(DTI) 深度学习模型 医学影像(T1图像、FA/MD图) 训练集:4998名UK Biobank参与者;外部验证集:SCANS(n=120)、RUN DMC(n=502)、PRESERVE(n=105)、NETWORKS(n=26)及1000名正常对照
2803 2025-07-12
Greater benefits of deep learning-based computer-aided detection systems for finding small signals in 3D volumetric medical images
2024-Jul, Journal of medical imaging (Bellingham, Wash.)
研究论文 本研究探讨了基于深度学习的计算机辅助检测系统在3D医学影像中检测小信号的优越性 研究发现CNN-CADe系统在3D搜索小信号时比2D搜索带来更大的性能提升,减少了因数据探索不足导致的错误 研究仅使用了数字乳腺断层合成(DBT)体模数据,未涉及真实患者数据 评估基于CNN的计算机辅助检测系统在3D和2D医学影像搜索中的性能差异 数字乳腺断层合成(DBT)体模中的微钙化小信号和大肿块信号 计算机视觉 乳腺癌 CNN-based CADe系统 CNN 3D/2D医学影像 16名非专业观察者
2804 2025-07-12
When liver disease diagnosis encounters deep learning: Analysis, challenges, and prospects
2023-Mar, ILIVER..
综述 本文综述了深度学习在肝脏研究中的应用,分析了数据模态、肝脏主题与应用之间的关系,并总结了相关深度学习方法 利用Sankey图展示了数据模态、肝脏主题与应用之间的关系,总结了深度学习在肝脏研究中的方法和趋势 仅基于过去5年的139篇论文进行分析,可能未涵盖所有相关研究 探讨深度学习在肝脏疾病诊断和治疗中的应用 肝脏疾病 数字病理学 肝脏疾病 深度学习 NA 多模态数据 139篇论文
2805 2025-07-12
Application of biological big data and radiomics in hepatocellular carcinoma
2023-Mar, ILIVER..
综述 本文综述了生物大数据和放射组学在肝细胞癌(HCC)中的研究进展 结合生物大数据和放射组学为HCC的诊断、预后和治疗提供了新方法和新思路 NA 探讨生物大数据和放射组学在HCC中的应用 肝细胞癌(HCC) 数字病理学 肝癌 组学技术(基因组学、转录组学、蛋白质组学)、液体活检、机器学习算法、深度学习算法 NA 生物大数据、影像数据(超声、CT、MRI) NA
2806 2025-07-12
Machine Learning to Predict Successful Opioid Dose Reduction or Stabilization After Spinal Cord Stimulation
2022-08-01, Neurosurgery IF:3.9Q1
research paper 使用机器学习模型预测脊髓刺激(SCS)后阿片类药物剂量成功减少或稳定的可能性 首次提出基于机器学习的模型来预测SCS后阿片类药物使用的减少或稳定,并比较了深度学习与逻辑回归的性能 研究依赖于IBM MarketScan数据库,可能无法涵盖所有相关变量 预测SCS后阿片类药物使用的减少或稳定,以辅助患者和外科医生的决策 接受SCS治疗的患者 machine learning NA machine learning, deep neural networks, logistic regression DNN, LR 医疗记录数据 7022名患者
2807 2025-07-12
Advances in artificial intelligence techniques drive the application of radiomics in the clinical research of hepatocellular carcinoma
2022-Mar, ILIVER..
综述 本文综述了人工智能技术在肝细胞癌(HCC)临床研究中推动放射组学应用的最新进展 结合人工智能技术,放射组学为HCC管理提供了新的视角,揭示了医学影像大数据中的像素级放射学信息,并将放射学表型与目标临床问题相关联 传统的放射组学流程依赖于手工设计的工程特征,而基于深度学习的放射组学流程虽然补充了通过自学习策略计算的深度特征,但仍存在一定局限性 探讨人工智能技术在肝细胞癌(HCC)临床研究中推动放射组学应用的最新进展 肝细胞癌(HCC)的临床研究 数字病理学 肝癌 放射组学 深度学习 医学影像 NA
2808 2025-07-12
A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications
2021-05-07, Scientific reports IF:3.8Q1
研究论文 本研究结合微流控技术和深度学习算法,开发了一种用于肺癌细胞高通量筛选的计算机辅助诊断系统 提出了一种结合微流控技术和深度学习的工作流程,用于肺癌细胞系的自动分类,实现了高准确率的癌细胞与正常细胞的区分 研究仅针对实验室培养的细胞系进行测试,未涉及临床样本 开发可靠的计算机辅助诊断系统,用于肺癌细胞的早期检测和分类 五种非小细胞肺癌细胞系(P-C9、SK-LU-1、H-1975、A-427、A-549)和正常细胞系(16-HBE) 数字病理学 肺癌 微流控技术、荧光显微镜成像 ResNet18(CNN) 图像 六种细胞系的图像数据(五种癌细胞系和一种正常细胞系)
2809 2025-07-11
Computational screening of umami tastants using deep learning
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究开发了一种基于深度学习的虚拟筛选流程,用于从大型分子数据库中识别高效鲜味物质 首次构建了基于Transformer的架构用于鲜味物质分类,并开发了预测鲜味化合物效能的神经网络模型 研究仅基于分子结构特征,未考虑实际味觉测试验证 开发高效识别新型鲜味物质的计算方法 鲜味分子与非鲜味分子 机器学习 NA 深度学习 Transformer, 神经网络 分子结构数据 867个分子(439个鲜味分子和428个非鲜味分子),并在包含约70,000个分子的FooDB数据库上进行应用验证
2810 2025-07-11
iDCNNPred: an interpretable deep learning model for virtual screening and identification of PI3Ka inhibitors against triple-negative breast cancer
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 提出了一种可解释的深度学习模型iDCNNPred,用于虚拟筛选和识别针对三阴性乳腺癌的PI3Ka抑制剂 开发了Custom-DCNN模型,性能优于预训练模型,并通过Grad-CAM技术增强了模型预测的可解释性 需要进一步的药物化学工作来提高筛选出的分子的效力和选择性 识别和筛选针对三阴性乳腺癌的PI3Ka抑制剂 PI3Ka抑制剂 数字病理学 三阴性乳腺癌 分子对接、体外PI3K抑制研究 Custom-DCNN、AlexNet、SqueezeNet、VGG19 2D分子图像 Maybridge化学库中的分子,最终筛选出12个有潜力的分子,其中4个进行了生物验证
2811 2025-07-11
GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 提出了一种名为GraphkmerDTA的新型深度学习模型,用于药物-靶标结合亲和力预测,并在多靶点抗阿尔茨海默病药物发现中应用 整合了Kmer特征与结构拓扑信息,克服了现有方法在序列特征提取和拓扑信息利用上的不足 未提及具体的计算资源需求或模型训练时间,可能在实际应用中存在效率问题 提高药物-靶标结合亲和力预测的准确性,并应用于药物发现 药物分子和蛋白质 机器学习 阿尔茨海默病 图神经网络(GNN)和全连接网络 GraphkmerDTA(结合GNN和Kmer特征) 序列数据和结构数据 超过两千种化合物的筛选库
2812 2025-07-11
Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI
2025-Aug-01, Investigative radiology IF:7.0Q1
研究论文 本研究探讨了基于深度学习的信号放大技术在单剂量T1加权脑MRI图像中的应用,以提高转移瘤的检测能力 利用深度学习技术从单剂量对比增强图像生成人工双剂量图像,避免了使用实际双剂量对比剂带来的环境和健康风险 研究中读者在人工双剂量图像上显示出更多的假阳性发现,尽管差异不显著 评估深度学习增强的单剂量脑MRI图像在转移瘤检测中的效果 30名参与者(平均年龄58.5±11.8岁,23名女性)的脑MRI图像 数字病理 脑转移瘤 MRI 深度学习 医学影像 30名参与者
2813 2025-07-11
Deep learning in the discovery of antiviral peptides and peptidomimetics: databases and prediction tools
2025-Aug, Molecular diversity IF:3.9Q2
综述 本文综述了抗病毒肽(AVPs)的数据库构建、理化特性及其在机器学习预测工具中的应用 探讨了AI技术在抗病毒肽发现中的关键作用,并介绍了专用数据库(如DRAVP、AVPdb和DBAASP)的开发与应用 现有数据库存在数据集小、注释不完整以及与多组学数据整合不足的问题,且预测工具面临过拟合、实验验证有限和缺乏机制性见解的挑战 推动抗病毒肽和拟肽类药物的发现与开发 抗病毒肽(AVPs)及其理化特性 自然语言处理 NA 机器学习和深度学习 NA 文本数据 NA
2814 2025-07-11
Integrating deep learning and molecular dynamics simulations for FXR antagonist discovery
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究结合深度学习和分子动力学模拟,发现FXR拮抗剂用于治疗代谢疾病 开发了预测FXR拮抗活性和毒性的深度学习模型,并通过分子动力学模拟筛选出具有潜在治疗价值的化合物 研究中筛选的化合物数量有限,且未进行临床验证 发现可用于治疗代谢疾病的FXR拮抗剂 FXR(法尼醇X受体)及其潜在拮抗剂 机器学习 代谢疾病 深度学习,分子动力学模拟 深度学习模型 化合物数据 从HMDB数据库中筛选的217,345种化合物
2815 2025-07-11
QMGBP-DL: a deep learning and machine learning approach for quantum molecular graph band-gap prediction
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本文提出了一种结合深度学习和机器学习的量子分子图带隙预测方法QMGBP-DL QMGBP-DL方法通过结合分子图编码器和机器学习模型,显著提高了分子和材料带隙能量的预测准确性 未提及具体局限性 加速药物设计和材料科学中的发现,特别是分子和量子材料性质的预测 分子和量子材料的带隙能量 机器学习 NA 图卷积网络(GCN)和随机森林 GCN, Random Forest 分子图数据(SMILES字符串) QM9, PCQM4M和OPV数据集
2816 2025-07-11
Cangrelor and AVN-944 as repurposable candidate drugs for hMPV: analysis entailed by AI-driven in silico approach
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究通过AI驱动的计算机模拟方法,筛选出Cangrelor和AVN-944作为抗人类偏肺病毒(hMPV)的候选药物 利用深度学习构建药效团模型筛选FDA批准药物和抗病毒药物,并通过分子对接和分子动力学模拟验证药物与hMPV F蛋白的结合稳定性 需要进一步的体外和体内实验验证候选药物的疗效 寻找可重新用于治疗hMPV感染的药物 人类偏肺病毒(hMPV)的F蛋白 计算生物学 呼吸道感染 深度学习、分子对接、分子动力学模拟 深度学习药效团模型 蛋白质结构数据、药物分子数据 初始筛选2400种FDA批准药物和255种抗病毒药物,最终筛选出792种和72种候选药物
2817 2025-07-11
Machine learning approaches for predicting the small molecule-miRNA associations: a comprehensive review
2025-Aug, Molecular diversity IF:3.9Q2
综述 本文全面回顾了机器学习在预测小分子与microRNA关联中的应用 对32种基于机器学习的SMA预测方法进行了详尽分类和趋势分析,提供了未来研究的宝贵见解 未提及具体方法在临床转化中的实际应用限制 增强对小分子-miRNA相互作用的理解和预测能力 小分子(SMs)与microRNA(miRNAs)的关联关系 机器学习 NA 机器学习算法 经典ML、深度学习、矩阵分解、网络传播、图学习、集成学习 生物分子相互作用数据 NA
2818 2025-07-11
Brain age prediction from MRI scans in neurodegenerative diseases
2025-Aug-01, Current opinion in neurology IF:4.1Q2
综述 本文综述了利用MRI扫描进行脑龄估计作为脑健康生物标志物的应用 探讨了脑龄估计在神经退行性疾病早期诊断、疾病监测和个性化医疗中的潜在应用 标准化实施、人口统计学偏差和可解释性等挑战仍然存在 探索脑龄估计作为神经退行性疾病早期检测工具的潜力 阿尔茨海默病、轻度认知障碍(MCI)和帕金森病患者 数字病理学 神经退行性疾病 MRI扫描、深度学习 深度学习模型 MRI图像 NA
2819 2025-07-11
Discovery of novel potential 11β-HSD1 inhibitors through combining deep learning, molecular modeling, and bio-evaluation
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究通过结合深度学习、分子建模和生物评估,发现了新型潜在的11β-HSD1抑制剂 使用基于GRU的循环神经网络构建分子生成模型,结合转移学习生成潜在的11β-HSD1抑制剂 化合物02的抑制活性不如对照药物 开发新型11β-HSD1抑制剂 11β-HSD1抑制剂 机器学习 糖尿病、胰岛素抵抗、血脂异常和肥胖 深度学习、分子对接、分子动力学模拟 GRU 分子数据 1,854,484个药物样分子
2820 2025-07-11
Drug repurposing to identify potential FDA-approved drugs targeting three main angiogenesis receptors through a deep learning framework
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究利用深度学习框架,从FDA批准的药物中识别出针对VEGFR、FGFR和EGFR三种主要血管生成受体的多靶点抑制剂 采用新颖的集成方法,结合分类和回归模型,同时考虑三种靶受体,以提高药物开发的成功率并减少耐药性 研究仅基于计算机模拟筛选,未进行实验验证 开发一种方法学,用于发现FDA批准药物中的多靶点抑制剂,以控制血管生成 2000多种FDA批准的药物 机器学习 癌症 深度学习 深度自编码器分类模型和回归模型 药物分子数据 2000多种FDA批准的药物
回到顶部