深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 30419 篇文献,本页显示第 2821 - 2840 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2821 2025-07-23
Mortality and Antibiotic Timing in Deep Learning-Derived Surviving Sepsis Campaign Risk Groups: A Multicenter Study
2025-Apr-01, Research square
研究论文 本研究利用深度学习模型对脓毒症患者进行风险分层,并探讨抗生素使用时机对不同风险组患者死亡率的影响 首次使用深度学习模型客观地将脓毒症患者分层到与SSC风险组相似的组别,并分析不同风险组中抗生素使用时机与死亡率的关系 未评估因果关系,需要更多前瞻性研究验证结果 评估基于深度学习风险分层的脓毒症患者抗生素使用时机与死亡率的关系 34,163名潜在脓毒症成年患者 数字病理学 脓毒症 深度学习 DL 临床数据 34,163名成年患者
2822 2025-07-23
SegCSR: WEAKLY-SUPERVISED CORTICAL SURFACES RECONSTRUCTION FROM BRAIN RIBBON SEGMENTATIONS
2025-Apr, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 提出了一种名为SegCSR的弱监督方法,用于从脑MRI带状分割中重建多个皮质表面 SegCSR通过联合学习微分同胚流来对齐皮质带状分割图的边界,无需依赖传统CSR流程生成的伪地面真值作为监督 方法在具有挑战性的深皮质沟区域可能仍需进一步优化 开发一种不依赖伪地面真值的皮质表面重建方法 脑MRI图像中的皮质表面 数字病理 NA 深度学习 NA MRI图像 两个大规模脑MRI数据集
2823 2025-07-23
A Tunable Forced Alignment System Based on Deep Learning: Applications to Child Speech
2025-Mar-31, Journal of speech, language, and hearing research : JSLHR
研究论文 开发了一种基于深度学习的可调谐强制对齐系统Wav2TextGrid,专为儿童语音设计 提出了一种可训练的、说话者自适应的神经强制对齐器,可直接根据手动对齐进行训练 仅针对3至6岁神经典型儿童语音进行了评估,未涵盖更广泛年龄或非典型语音 开发适用于儿童语音的高精度自动语音对齐工具 42名3至6岁神经典型儿童的语音数据及TIMIT语料库 自然语言处理 NA 深度学习 神经网络 语音 42名儿童语音数据及TIMIT语料库
2824 2025-07-23
Reducing hepatitis C diagnostic disparities with a fully automated deep learning-enabled microfluidic system for HCV antigen detection
2025-Mar-21, Science advances IF:11.7Q1
研究论文 开发了一种基于智能手机的完全自动化微流控系统,用于HCV抗原检测,以减少丙型肝炎诊断差异 结合铂纳米颗粒、深度学习图像处理和微流控技术,开发了一种高精度、便携式的HCV抗原检测设备 尚未获得FDA批准,且在高资源环境下的适用性未经验证 解决资源有限地区HCV诊断的及时性和准确性问题 丙型肝炎病毒(HCV)抗原检测 数字病理 丙型肝炎 微流控技术、深度学习图像处理 深度学习 图像 NA
2825 2025-07-23
StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest
2025-Mar-20, Communications biology IF:5.2Q1
research paper 介绍了一种名为StainAI的深度学习工具,用于快速高通量分析小胶质细胞形态,并应用于心脏骤停和病毒感染模型研究 开发了StainAI工具,能够从小胶质细胞免疫组化图像中进行快速高通量分析,并计算感兴趣区域的激活分数 虽然在小鼠和非人灵长类动物模型中验证了其通用性,但尚未在人类数据上进行测试 研究小胶质细胞形态变化及其在神经炎症中的作用 小胶质细胞 digital pathology neuroinflammation 免疫组化 CNN image 数百万个小胶质细胞,来自大鼠和非人灵长类动物模型
2826 2025-07-23
Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage
2025-Mar-12, Cell genomics IF:11.1Q1
研究论文 该研究利用迁移学习预测转录因子剂量如何影响面部祖细胞中调控元件的染色质可及性 结合迁移学习和定量染色质响应测量,揭示了顺式调控代码的额外层次 研究仅针对TWIST1和SOX9两种转录因子,可能不适用于其他转录因子 揭示转录因子剂量对染色质可及性的定量响应的序列决定因素 面部祖细胞中的调控元件染色质可及性 机器学习 NA 迁移学习 深度学习模型 染色质可及性数据 NA
2827 2025-07-23
Tracking the Preclinical Progression of Transthyretin Amyloid Cardiomyopathy Using Artificial Intelligence-Enabled Electrocardiography and Echocardiography
2025-Feb-24, medRxiv : the preprint server for health sciences
研究论文 利用人工智能技术通过心电图和超声心动图追踪转甲状腺素蛋白淀粉样心肌病的临床前进展 首次应用深度学习模型分析心电图和超声心动图数据,实现对转甲状腺素蛋白淀粉样心肌病的早期风险分层 研究为回顾性分析,样本来源仅限于两个医疗中心 开发可扩展的转甲状腺素蛋白淀粉样心肌病临床前监测策略 转诊接受核素心肌淀粉样蛋白检测的患者 数字病理学 心血管疾病 深度学习 深度学习模型 视频(TTE)、图像(ECG) 内部队列984人(YNHHS),外部队列806人(HMH),共分析7,352次TTE和32,205次ECG数据
2828 2025-07-23
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images
2025-Feb-14, Scientific reports IF:3.8Q1
研究论文 本研究验证了Cellpose在自发荧光显微镜图像中的单细胞分割可靠性 开发了一种新的自发荧光训练模型(ATM),用于NAD(P)H强度图像的核分割,提高了分割的重复性和准确性 研究主要针对NAD(P)H图像,未涵盖其他类型的自发荧光图像 验证Cellpose在自发荧光显微镜图像中的单细胞分割性能 PANC-1细胞和患者来源的癌症类器官(9例患者) 数字病理学 癌症 多光子强度成像和荧光寿命成像显微镜(FLIM) Cellpose 图像 PANC-1细胞和9例患者来源的癌症类器官
2829 2025-07-23
Top-DTI: Integrating Topological Deep Learning and Large Language Models for Drug Target Interaction Prediction
2025-Feb-08, bioRxiv : the preprint server for biology
研究论文 提出了一种名为Top-DTI的新框架,通过整合拓扑深度学习和大型语言模型来预测药物靶点相互作用 结合拓扑数据分析和大型语言模型,利用持久同源性提取蛋白质接触图和药物分子图像的拓扑特征,同时通过蛋白质和药物的大型语言模型生成语义丰富的嵌入 未提及具体局限性 提高药物靶点相互作用预测的准确性和鲁棒性,为药物发现提供计算支持 药物靶点相互作用 机器学习 NA 拓扑数据分析(TDA)、大型语言模型(LLMs) Top-DTI 蛋白质接触图、药物分子图像、蛋白质序列、药物SMILES字符串 公共BioSNAP和Human DTI基准数据集
2830 2025-07-23
Deep learning to decode sites of RNA translation in normal and cancerous tissues
2025-Feb-02, Nature communications IF:14.7Q1
研究论文 本文介绍了一种基于transformer模型的方法RiboTIE,用于增强核糖体分析数据的分析,以解码RNA翻译位点在正常和癌变组织中的变化 RiboTIE直接利用原始核糖体分析计数,以高精度和灵敏度检测翻译的开放阅读框(ORFs),在多种数据集上评估其性能 未提及具体的技术限制或数据集局限性 提高核糖体分析数据的分析准确性和深度,以更好地理解蛋白质合成及其在疾病中的意义 正常脑组织和髓母细胞瘤癌症样本中的RNA翻译调控 生物信息学 髓母细胞瘤 Ribo-Seq transformer模型 核糖体分析数据 多种数据集,包括正常脑组织和髓母细胞瘤样本
2831 2025-07-23
Cell Segmentation With Globally Optimized Boundaries (CSGO): A Deep Learning Pipeline for Whole-Cell Segmentation in Hematoxylin-and-Eosin-Stained Tissues
2025-Feb, Laboratory investigation; a journal of technical methods and pathology
研究论文 开发了一种名为CSGO的深度学习流程,用于在H&E染色组织中进行全细胞分割 整合了细胞核和细胞膜分割算法,并采用基于能量的分水岭方法进行后处理,显著提高了分割性能 仅在5个外部数据集上进行了评估,样本多样性可能有限 开发自动化的全细胞分割方法以推进病理图像分析能力 H&E染色组织中的细胞 数字病理学 肝癌 深度学习 YOLO, U-Net 图像 7例肝癌和11例正常肝组织样本,并在5个外部数据集(包括肝、肺和口腔疾病病例)上进行评估
2832 2025-07-23
Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry
2025-Feb, Cytometry. Part A : the journal of the International Society for Analytical Cytology
研究论文 本文介绍了一种基于最优传输数学的新技术,用于直接从成像数据中建模与核染色质结构相关的信息内容 提出了一种基于最优传输的形态测量(TBM)框架,能够表示每个细胞核相对于模板细胞核的全部信息内容,且对不同染色模式和成像协议具有鲁棒性 NA 开发一种定量测量方法,用于在不同数据集和癌症类型之间进行有意义的比较 癌细胞核的形态学特征 数字病理学 癌症(包括肝癌、甲状腺癌、肺癌和皮肤癌等) 最优传输、特征提取、深度学习 TBM框架 图像 大型数据集(如TCGA和人类蛋白质图谱)
2833 2025-07-23
ProtoSAM-2D: 2D Semantic Segment Anything Model with Mask-Level Prototype-Learning and Distillation
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 提出了一种名为ProtoSAM-2D的增强型2D医学图像语义分割模型,结合了原型学习和蒸馏技术 通过引入掩码级原型预测机制和蒸馏方法,增强了SAM-Med2D的语义理解能力,同时保持了计算效率 目前仅针对2D医学图像,未涉及3D或其他复杂场景 提升医学图像语义分割的适应性和效率 2D医学图像中的多器官分割 数字病理 NA 深度学习、原型学习、知识蒸馏 SAM增强模型(基于CNN架构) 2D医学图像 未明确说明具体数量,但涉及两种成像模态的多器官分割任务
2834 2025-07-23
A deep learning model for clinical outcome prediction using longitudinal inpatient electronic health records
2025-Jan-23, medRxiv : the preprint server for health sciences
研究论文 开发了一个基于Transformer的临床结果预测模型TECO,用于利用住院电子健康记录(EHR)数据预测ICU死亡率 提出了一个Transformer基础的模型TECO,在预测ICU死亡率方面优于专有指标和传统机器学习模型,并能识别与结果相关的临床可解释特征 需要进一步验证 开发一个深度学习模型用于临床结果预测 住院患者的电子健康记录数据 机器学习 COVID-19, ARDS, 败血症 深度学习 Transformer 电子健康记录(EHR) COVID-19患者2579人,ARDS队列2799人,败血症队列6622人
2835 2025-07-23
Development and Validation of a Machine Learning Method Using Vocal Biomarkers for Identifying Frailty in Community-Dwelling Older Adults: Cross-Sectional Study
2025-01-16, JMIR medical informatics IF:3.1Q2
研究论文 开发并验证了一种利用声音生物标志物识别社区居住老年人虚弱状态的机器学习方法 首次使用深度学习提取的声学特征作为声音生物标志物来预测虚弱状态,并比较了不同数据组合模型的性能 样本量较小(127人),且未说明模型在其他人群中的泛化能力 开发非侵入性、可扩展的虚弱状态识别方法 社区居住的50岁及以上老年人 机器学习 老年疾病 深度学习声学特征提取 SpeechAI(纯语音模型)、DemoAI(纯人口统计模型)、DemoSpeechAI(混合模型) 语音数据和人口统计数据 127名社区居住老年人
2836 2025-07-23
BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans
2025-Jan-11, bioRxiv : the preprint server for biology
research paper 介绍了一种名为BIBSNet的深度学习网络,用于婴儿MRI扫描的脑部分割 提出了一个开源、社区驱动的模型BIBSNet,利用数据增强和大样本手动注释图像,实现了鲁棒且可泛化的脑部分割 研究样本年龄范围仅限于0-8个月,可能不适用于其他年龄段的婴儿 开发一种高效的婴儿脑部MRI图像分割方法,以支持典型和非典型脑发育研究 0-8个月大的婴儿的MRI脑部图像 digital pathology NA MRI扫描 CNN image 90名参与者,年龄范围0-8个月(中位年龄4.6个月)
2837 2025-07-23
ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants
2025-Jan-08, bioRxiv : the preprint server for biology
研究论文 介绍了一种名为ChromBPNet的深度学习DNA序列模型,用于解析染色质可及性谱的序列语法、转录因子足迹和调控变异 ChromBPNet能够分解酶特异性偏差与调控序列决定因素,从而在不同实验和测序深度下稳健地发现紧凑的TF基序词典、协同基序语法和精确足迹 尽管设计轻量,但与当代更大的模型相比,其性能仍有待进一步验证 解码调控DNA和遗传变异,以理解转录因子结合和染色质可及性的序列语法和遗传变异 染色质可及性谱和调控序列 机器学习 NA 染色质可及性测定 深度学习DNA序列模型 DNA序列数据 NA
2838 2025-07-23
Step Width Estimation in Individuals With and Without Neurodegenerative Disease via a Novel Data-Augmentation Deep Learning Model and Minimal Wearable Inertial Sensors
2025-01, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种新型数据增强深度学习模型,用于通过最小化可穿戴惯性传感器估计步宽 使用数据增强的深度学习模型和最小化可穿戴惯性传感器(IMUs)来估计步宽,克服了传统方法的高成本和耗时问题 研究样本量较小,仅包括12名神经退行性疾病患者和17名健康个体 开发一种便携式步宽监测方法,用于神经退行性疾病患者和健康个体的康复训练和动态平衡控制 神经退行性疾病患者(SCA3)和健康个体 机器学习 神经退行性疾病 数据增强深度学习模型 深度学习模型 惯性传感器数据 12名神经退行性疾病患者和17名健康个体
2839 2025-07-23
Continuous Prediction of Wrist Joint Kinematics Using Surface Electromyography From the Perspective of Muscle Anatomy and Muscle Synergy Feature Extraction
2025-01, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出四种深度学习模型,从不同角度提取肌肉协同特征,用于预测中风患者手腕关节运动意图 首次从肌肉解剖学角度使用3DCNN模型预测运动意图,并重构1D sEMG样本为2D帧 传统矩阵分解算法在提取肌肉协同特征方面仍存在一定局限性 提高中风患者上肢功能障碍康复效果,通过sEMG信号预测运动意图 中风患者的手腕关节运动 机器学习 中风 sEMG信号处理 3DCNN, CNN-LSTM, GAN sEMG信号 自建手腕运动数据集和公开Ninapro DB2数据集
2840 2025-07-23
Combination of facial and nose features of Amur tigers to determine age
2025-Jan, Integrative zoology IF:3.5Q1
研究论文 通过结合东北虎的面部和鼻子特征,利用深度学习模型进行年龄测定 发现老虎鼻子上的黑色斑点面积与年龄呈正相关,并首次将面部和鼻子特征结合用于年龄测定 准确率为87.81%,仍有提升空间 开发一种基于图像特征的东北虎年龄测定方法 东北虎的面部和鼻子特征 计算机视觉 NA 深度学习 CNN 图像 未提及具体样本数量
回到顶部