本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2841 | 2025-12-24 |
Exploring voltage-gated sodium channel conformations and protein-protein interactions using AlphaFold2
2026-Mar-02, The Journal of general physiology
IF:3.3Q1
DOI:10.1085/jgp.202413705
PMID:41411077
|
研究论文 | 本研究利用AlphaFold2探索电压门控钠通道的多种构象及其与蛋白质伙伴的相互作用 | 通过改进的构象采样方法(如子采样多序列比对和循环次数变化),首次系统性地展示了AlphaFold2能够模拟钠通道的多种构象,包括实验未描述的状态和潜在中间态,并揭示了蛋白质伴侣对构象景观的显著影响 | 预测模型仍为假设,需实验数据验证,且存在构象采样和相互作用的建模局限性 | 探索AlphaFold2在模拟电压门控钠通道构象和蛋白质-蛋白质相互作用方面的能力,以增进对钠通道结构、门控和调控的理解 | 电压门控钠通道(NaV)的α亚基及其蛋白质伙伴(如辅助β亚基和钙调蛋白) | 机器学习 | NA | AlphaFold2, AlphaFold Multimer, 构象采样方法(子采样多序列比对和循环次数变化) | 深度学习模型 | 蛋白质序列和结构数据 | NA | AlphaFold2, AlphaFold Multimer | AlphaFold2架构 | 相关性分析, 聚类分析 | NA |
| 2842 | 2025-12-24 |
Artificial intelligence revolutionize food detection? Vision, olfaction and taste integrated with machine learning/deep learning in food detection
2026-Jan-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.147377
PMID:41365156
|
综述 | 本文综述了人工智能(AI)如何通过机器学习(ML)和深度学习(DL)技术,整合视觉、嗅觉和味觉感知系统,革新食品检测领域 | 系统阐述了AI在食品检测中实现特征自动提取、模式识别和决策反馈的机制,并展望了多模态数据融合和大语言模型(LLMs)的潜在应用 | 总结了AI在食品检测中仍面临的主要挑战 | 阐明AI在食品检测领域的理论框架和技术范式变革,分析其优势与局限,并展望未来发展方向 | 食品检测技术 | 机器学习 | NA | 计算机视觉、电子鼻、电子舌 | 机器学习、深度学习 | 复杂信号(视觉、嗅觉、味觉数据) | NA | NA | NA | 检测精度、鲁棒性 | NA |
| 2843 | 2025-12-24 |
Surface-Enhanced Raman Spectroscopy Semi-Quantitative Molecular Profiling with a Convolutional Neural Network
2026-Jan, Applied spectroscopy
IF:2.2Q2
DOI:10.1177/00037028251377474
PMID:40887786
|
研究论文 | 本研究开发了一种结合表面增强拉曼光谱与卷积神经网络和支持向量回归的层次分析框架,用于复杂环境中多种分子的半定量分析 | 提出了一种集成深度学习和回归技术的层次分析框架,首次将多标签CNN用于SERS光谱中结构相似分析物的识别,并结合SVR进行半定量浓度比测定 | 目前仅验证了短链脂肪酸二元混合物,尚未扩展到更复杂的多组分系统或临床样本 | 解决复杂环境中多种分子物种的识别和定量分析挑战 | 短链脂肪酸(SCFAs)作为代表性生物分子靶标 | 机器学习 | NA | 表面增强拉曼光谱(SERS) | CNN, SVR | 光谱数据 | NA | NA | 卷积神经网络 | 分类准确率 | NA |
| 2844 | 2025-12-24 |
Integrating Deep Model-Based Learning With Modular State-Based Stackelberg Games for Self-Optimizing Distributed Production Systems
2026-Jan, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3610707
PMID:40996999
|
研究论文 | 本文提出了一种将深度模型学习与模块化状态Stackelberg博弈相结合的新方法,用于制造系统的分布式自优化 | 使用深度学习替代数字表示来学习系统动态,并在虚拟环境中训练博弈参与者,从而减少实际系统交互需求 | NA | 开发一种样本高效的方法,用于分布式生产系统的自优化 | 制造系统 | 机器学习 | NA | 深度学习 | 深度学习模型 | 系统动态数据 | NA | NA | NA | 交互减少率 | NA |
| 2845 | 2025-12-24 |
Accurate multi-b-value DWI generation using two-stage deep learning: multicenter study
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112497
PMID:41161267
|
研究论文 | 本研究开发并验证了一种两阶段深度学习框架(DC2Anet-MineGAN),用于高保真多器官、多b值DWI合成和准确ADC恢复,以解决DWI采集的实际限制 | 提出了一种结合DC2Anet和MineGAN的两阶段深度学习框架,首次实现跨多个解剖区域和b值的高质量DWI合成与ADC恢复,克服了临床DWI采集的局限性 | 存在潜在的幻觉或失真风险,需要进一步的多中心临床验证 | 开发并验证一个深度学习框架,用于高保真多器官、多b值DWI合成和准确ADC恢复,以解决DWI采集的实际限制 | 来自三家医院和TCIA数据库的DWI图像,涵盖脑、乳腺、腹部、颈部和骨盆五个解剖区域,b值范围为0-1000 s/mm² | 医学影像分析 | NA | 扩散加权成像(DWI) | 深度学习 | 医学影像(DWI图像) | 总计50,000张图像,按8:2比例分为训练集和测试集 | NA | DC2Anet, MineGAN | MSE, MAE, PSNR, SSIM, ICC | NA |
| 2846 | 2025-12-24 |
Artificial intelligence-based lesion characterization and outcome prediction of prostate cancer on [18F]DCFPyL PSMA imaging
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2025.111265
PMID:41202884
|
研究论文 | 本研究开发了基于人工智能的模型,用于前列腺癌[18F]DCFPyL PET/CT成像中的病灶特征描述和预后预测 | 开发了结合PET和CT模态的输入串联深度学习模型,在PSMA-RADS评分、恶性分类、治疗反应预测和生存预测等多个任务中表现出优越性能 | 生存预测的C指数相对较低(内部测试集0.58,前瞻性测试集0.60),模型性能有待进一步提升 | 开发人工智能工具以改善前列腺癌的病灶特征描述和患者预后预测,辅助临床决策 | 接受[18F]DCFPyL PET/CT成像的前列腺癌患者 | 数字病理学 | 前列腺癌 | [18F]DCFPyL PET/CT成像 | 深度学习模型 | 医学影像(PET和CT图像) | 训练和内部测试集238例患者,前瞻性测试集36例患者 | NA | 输入串联模型(单模态和多模态深度学习模型) | AUROC(受试者工作特征曲线下面积), C-index(一致性指数) | NA |
| 2847 | 2025-12-24 |
AttnSeq-PPI: Enhancing protein-protein interaction network prediction using transfer learning-driven hybrid attention
2026-Jan-01, Biochimica et biophysica acta. Proteins and proteomics
DOI:10.1016/j.bbapap.2025.141102
PMID:41138794
|
研究论文 | 提出了一种基于混合注意力机制的深度学习框架AttnSeq-PPI,用于增强蛋白质-蛋白质相互作用网络预测 | 结合自注意力和交叉注意力设计混合注意力机制,利用ProtT5语言模型嵌入蛋白质序列,有效捕获序列内长程依赖和蛋白质间相互作用特征 | 未明确说明模型在特定蛋白质类型或复杂相互作用场景下的局限性 | 开发一种基于序列的蛋白质-蛋白质相互作用预测方法,以克服实验和计算技术的限制 | 蛋白质序列及其相互作用网络 | 自然语言处理 | NA | 深度学习,大语言模型 | 混合注意力机制 | 蛋白质序列 | 基于种内和多物种数据集进行5折交叉验证,并使用四个独立物种和真实PPI网络数据集进行验证 | 未明确指定 | 自注意力,交叉注意力 | 准确率 | NA |
| 2848 | 2025-12-24 |
Deep Feature Learning From Electromyographic Signals for Gesture Recognition Systems
2026, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3635419
PMID:41264458
|
综述 | 本文全面综述了用于肌电信号手势识别系统的最新深度学习模型,并从数据表示的角度对先进架构进行了分类 | 首次从数据表示(如时域波形、空间图像、谱域和图结构)的视角对深度学习架构进行分类,并探讨了半监督与自监督学习作为全监督范式的补充方法 | 高质量标注的肌电数据集有限,阻碍了研究成果向实际应用的转化 | 开发用于肌电信号解码的通用且鲁棒的深度学习模型,以推动手势识别系统在人机交互、神经接口和康复机器人等领域的应用 | 肌电信号 | 机器学习 | NA | 肌电图 | 深度学习模型 | 肌电信号(可表示为时域波形、空间图像、谱域和图结构) | NA | NA | NA | NA | NA |
| 2849 | 2025-12-24 |
Modality-AGnostic image Cascade (MAGIC) for multi-modality cardiac substructure segmentation
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2025.111296
PMID:41271169
|
研究论文 | 本文提出并验证了一种名为MAGIC的模态无关图像级联深度学习管道,用于多模态心脏亚结构分割 | 通过复制nnU-Net骨干网络的编码和解码分支来处理多模态输入和重叠标签,实现了在单一模型中分割多种图像模态和重叠结构,同时显著减少了训练时间和参数数量 | 未明确说明模型在更广泛或未见过的模态上的泛化能力,以及在实际临床环境中的部署验证 | 开发一种高效、轻量化的深度学习解决方案,用于多模态心脏亚结构分割,以减轻轮廓勾画负担并提高治疗规划中的心脏保护 | 心脏亚结构,包括心脏整体、心腔、大血管、瓣膜、冠状动脉和传导节点 | 数字病理学 | 心血管疾病 | 深度学习 | CNN | 图像 | 训练集151例,验证集15例,测试集30例,涉及心脏CT血管造影、模拟CT和低场MR-Linac等多种模态 | PyTorch | nnU-Net | Dice相似系数, Wilcoxon符号秩检验 | NA |
| 2850 | 2025-12-24 |
Evaluation of compartmentalized automatic segmentation for definition of the GTV in glioblastoma radiotherapy
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2025.111308
PMID:41308924
|
研究论文 | 本研究评估了深度学习模型Neosoma Glioma在胶质母细胞瘤放疗中自动分割大体肿瘤体积的临床应用价值 | 首次评估了基于深度学习的自动分割模型在术后胶质母细胞瘤放疗靶区勾画中的临床应用,并验证了其几何相似性和剂量学等效性 | 研究为回顾性分析,样本量有限(100例),且仅在一家医疗机构进行验证 | 评估自动分割模型在胶质母细胞瘤放疗靶区定义中的临床应用可行性 | 术后胶质母细胞瘤患者 | 数字病理学 | 胶质母细胞瘤 | 多模态MRI | 深度学习模型 | 医学影像 | 100例胶质母细胞瘤病例 | NA | Neosoma Glioma | Dice相似系数 | NA |
| 2851 | 2025-12-24 |
Dynamic prediction of Radiotherapy toxicities in Head and neck cancer using clinical and imaging data
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2025.111312
PMID:41314396
|
研究论文 | 本研究开发了一个动态深度学习模型,用于预测头颈癌放疗期间的三种主要毒性反应,通过整合临床数据和每日锥形束CT影像进行评估 | 首次将每日CBCT影像的解剖变形特征(雅可比行列式矩阵)与临床数据结合,用于动态预测头颈癌放疗毒性,并评估了序列影像或剂量学特征对早期预测的改进效果 | 研究为回顾性分析,影像数据(早期Jf或影像组学)未显示出对预测性能的改进,可能受限于数据特征或模型架构 | 开发一个动态深度学习模型,以早期预测头颈癌放疗期间的毒性反应,优化患者管理 | 头颈癌患者 | 数字病理学 | 头颈癌 | 锥形束计算机断层扫描(CBCT),影像组学分析 | CNN, MLP | 影像(CBCT),临床数据 | 1,012名头颈癌患者 | NA | 3D ResNet50, 多层感知机 | 准确率 | NA |
| 2852 | 2025-12-24 |
Real-Time Rodent Pupillometry on an Embedded Platform for Neuromodulation
2026, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3643813
PMID:41385412
|
研究论文 | 本研究提出了一种基于嵌入式平台的低成本实时啮齿动物瞳孔测量系统,用于神经调控研究 | 开发了一种针对啮齿动物优化的基于规则的瞳孔测量算法,结合自适应椭圆拟合、RGB掩模伪影抑制和贪婪跟踪,在红外照明下实现稳健性能,无需GPU加速 | 系统主要针对大鼠设计,可能不直接适用于其他啮齿动物或不同实验条件;性能评估基于特定实验设置,泛化能力需进一步验证 | 开发一种适用于啮齿动物实验的实时瞳孔测量系统,以支持神经调控研究 | Long-Evans大鼠 | 计算机视觉 | NA | 红外照明成像 | 基于规则的算法 | 图像 | 未明确指定样本数量,但涉及Long-Evans大鼠的体内实验 | 嵌入式平台(未指定具体框架) | 自适应椭圆拟合、RGB掩模、贪婪跟踪 | 检测率 | 嵌入式平台(无需GPU加速) |
| 2853 | 2025-12-24 |
Clinical advances in curve of Spee assessment: Deep learning for automatic tooth landmark detection in Invisalign
2026-Jan, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics
IF:2.7Q1
DOI:10.1016/j.ajodo.2025.09.009
PMID:41429442
|
研究论文 | 本研究提出了一种基于深度学习的全自动方法,用于从口内扫描数据中评估Spee曲线,旨在提高测量效率并支持评估不同垂直骨面型患者在Invisalign治疗中Spee曲线整平的可预测性 | 首次引入深度学习网络(结构感知长短期记忆框架)实现Spee曲线的全自动评估,通过两阶段方法检测牙齿标志点,提高了测量效率和准确性 | 研究为回顾性设计,样本量相对有限(194个下颌弓模型),且仅针对Invisalign治疗患者,可能限制了结果的普适性 | 开发一种自动化方法以高效、准确地评估Spee曲线,并分析不同垂直骨面型患者在Invisalign治疗中Spee曲线整平的可预测性差异 | 接受Invisalign治疗的患者的下颌弓模型 | 数字病理学 | NA | 口内扫描 | LSTM | 三维模型 | 194个下颌弓模型用于训练和验证,55名不同垂直骨面型患者用于分析 | NA | 结构感知长短期记忆框架 | 平均径向误差, 成功检测率, 配对Wilcoxon检验 | NA |
| 2854 | 2025-12-24 |
NPC-SurvAI: A fully automated deep learning framework for prognostic prediction and risk stratification in patients with nasopharyngeal carcinoma
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2025.111223
PMID:41429722
|
研究论文 | 本研究提出了一个名为NPC-SurvAI的端到端深度学习框架,用于基于MRI对鼻咽癌患者进行预后预测和风险分层 | 开发了一个结合AttVNet进行图像分割和DenseNet-ICAM进行预后评估的完全自动化深度学习框架,并整合了临床和影像特征以提升预测性能 | 这是一项回顾性研究,需要前瞻性验证以确认其临床适用性 | 利用深度学习对鼻咽癌患者进行预后评估和风险分层,以辅助临床治疗决策 | 鼻咽癌患者 | 数字病理 | 鼻咽癌 | MRI | CNN | 图像 | 2180名接受基线MRI检查的鼻咽癌患者 | NA | AttVNet, DenseNet-ICAM | Dice相似系数, 综合曲线下面积, 时间依赖性AUC | NA |
| 2855 | 2025-12-24 |
Interpreting the Effect of Generative Adversarial Network Application on Deep Learning Model Performance for Chlorophyll-a Concentration Prediction in a Stream Using Explainable Artificial Intelligence
2026-Jan, Water environment research : a research publication of the Water Environment Federation
IF:2.5Q2
DOI:10.1002/wer.70247
PMID:41431361
|
研究论文 | 本研究评估了使用时间序列生成对抗网络(GAN)生成合成数据对长短期记忆(LSTM)网络在预测溪流中叶绿素-a浓度性能的影响 | 应用时间序列GAN生成合成数据,并结合可解释人工智能(XAI)技术(如Shapley值分析)定量评估GAN生成数据对模型内部推理过程的影响 | GAN生成数据对模型性能的整体提升效果有限,且在较长序列长度(15和18)下可能导致性能下降 | 评估生成对抗网络在改善藻华预测模型性能方面的潜力 | 溪流中叶绿素-a浓度的预测 | 机器学习 | NA | 时间序列生成对抗网络(GAN),长短期记忆(LSTM)网络,可解释人工智能(XAI) | GAN, LSTM | 时间序列数据 | NA | NA | 时间序列GAN, LSTM | 纳什-萨特克利夫效率系数(NSE) | NA |
| 2856 | 2025-12-24 |
Comparative Study of Machine Learning Methods for Modeling Graphene-Based Adsorption in Water Treatment
2026-Jan, Water environment research : a research publication of the Water Environment Federation
IF:2.5Q2
DOI:10.1002/wer.70252
PMID:41431394
|
研究论文 | 本研究比较了多项式回归、支持向量机和人工深度神经网络在小型数据集上预测石墨烯基材料吸附水污染物效率的性能 | 针对小型数据集(20-30个样本)优化机器学习方法,比较了多项式回归、支持向量机和深度神经网络在吸附研究中的灵活性和性能 | 研究基于相对较小的数据集(20-30个样本),可能限制模型的泛化能力;未探讨其他机器学习方法或更大数据集的影响 | 评估和比较不同机器学习方法在预测水污染物去除效率方面的性能,为吸附系统优化提供建模建议 | 石墨烯相关纳米材料吸附水污染物的效率 | 机器学习 | NA | NA | 多项式回归, 支持向量机, 人工深度神经网络 | 数值数据 | 四个已发布数据集,每个数据集包含20-30个样本 | TensorFlow | NA | 交叉验证可靠性, 性能, 容忍度 | NA |
| 2857 | 2025-12-24 |
ZNGEA: ZINB-NMF Integrated Graph Embedding Autoencoder for Metabolite-Disease Association Identification
2025-Dec-23, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.5c05618
PMID:41360747
|
研究论文 | 本文提出了一种名为ZNGEA的新型深度学习算法,用于高效识别代谢物与疾病之间的潜在关联 | 整合了零膨胀负二项分布(ZINB)和非负矩阵分解(NMF),并结合非线性方法融合多相似性网络,以从多角度提取重要信息 | NA | 开发计算方法来高效识别代谢物与疾病之间的潜在关联 | 代谢物与疾病之间的关联 | 机器学习 | NA | 深度学习 | 图卷积自编码器 | 网络数据 | NA | NA | 图卷积自编码器 | AUC, AUPR | NA |
| 2858 | 2025-12-24 |
GPMassSimulator: A Graphormer-Based Method for Glycopeptide MS/MS Spectra Prediction
2025-Dec-23, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.5c02375
PMID:41364107
|
研究论文 | 本文提出了一种基于Graphormer的深度学习方法GPMassSimulator,用于准确预测完整N-糖肽的串联质谱(MS/MS)谱图和保留时间 | 利用GpepFormer模块有效表示和整合肽序列与聚糖结构,捕捉其复杂依赖关系,从而提升对相似糖肽(具有类似聚糖/肽骨架的糖肽)的区分能力 | NA | 开发一种深度学习方法,用于糖蛋白组学中糖肽的准确鉴定,特别是针对结构复杂和异质性的糖肽 | 糖肽(特别是N-糖肽)及其串联质谱(MS/MS)谱图和保留时间 | 机器学习 | NA | 串联质谱(MS/MS) | Graphormer | 质谱数据 | NA | NA | Graphormer, GpepFormer | 鉴定准确率, Top-1鉴定准确率, 灵敏度 | NA |
| 2859 | 2025-12-24 |
A Deep Learning Model for Efficient Nontargeted Screening of New Psychoactive Substances with Benchtop Nuclear Magnetic Resonance Devices
2025-Dec-23, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.5c05514
PMID:41368808
|
研究论文 | 本文提出了一种用于台式核磁共振设备进行新型精神活性物质非靶向筛查的深度学习模型 | 提出了一种结合通道注意力增强架构、化学信息预处理以及将NMR谱图与SMILES表示对齐的对比预训练方法的深度学习模型,显著增强了低信噪比条件下的谱图特征提取能力 | 模型目前仅针对九种NPS类别进行分类,未明确提及对其他物质或更广泛类别的泛化能力 | 开发一种能够利用低信噪比台式核磁共振数据进行高效、准确的新型精神活性物质非靶向筛查的方法 | 新型精神活性物质 | 机器学习 | NA | 核磁共振 | 深度学习模型 | 核磁共振谱图数据 | NA | NA | 通道注意力增强架构 | 准确率 | NA |
| 2860 | 2025-12-24 |
DeepMIR: A Hybrid Convolutional Neural Network-Transformer Framework for Accurate Identification of Target Components from Mid-Infrared Spectra of Mixtures
2025-Dec-23, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.5c04545
PMID:41384937
|
研究论文 | 提出了一种名为DeepMIR的深度学习框架,用于从混合物的中红外光谱中准确识别目标成分 | 首次将卷积神经网络与Transformer编码器结合,构建了一种混合架构,用于从混合物的中红外光谱中识别目标成分,该框架能有效处理参考光谱与混合物光谱采集技术不同带来的挑战 | NA | 解决分析化学中因严重光谱重叠和仪器变异性导致的混合物中红外光谱成分准确识别难题 | 复杂混合物(包括液体溶剂、固体颜料混合物和商业混纺织物)的中红外光谱 | 机器学习 | NA | 中红外光谱 | CNN, Transformer | 光谱数据 | 超过67,000个合成增强的光谱对 | NA | 混合卷积神经网络-Transformer架构 | 准确率, 统计显著性检验 | NA |