本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2901 | 2025-07-23 |
Performance of a Chest Radiograph-based Deep Learning Model for Detecting Hepatic Steatosis
2025-Jun, Radiology. Cardiothoracic imaging
DOI:10.1148/ryct.240402
PMID:40539916
|
研究论文 | 开发并评估了一种基于胸部X光片的深度学习模型,用于检测肝脂肪变性 | 利用胸部X光片而非传统方法检测肝脂肪变性,展示了深度学习在非传统影像数据上的应用潜力 | 研究为回顾性设计,可能受限于数据收集的偏差;外部验证集的性能略低于内部测试集 | 探索深度学习模型在利用胸部X光片检测肝脂肪变性方面的性能 | 接受过控制衰减参数(CAP)检查的患者胸部X光片 | 数字病理学 | 肝脂肪变性 | 控制衰减参数(CAP) | 深度学习模型 | 胸部X光片 | 6599张X光片,来自4414名患者(内部测试集529张/363人,外部测试集1100张/783人) |
2902 | 2025-07-23 |
scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework
2025-May-14, Cell genomics
IF:11.1Q1
DOI:10.1016/j.xgen.2025.100875
PMID:40373737
|
研究论文 | 提出了一种名为scPrediXcan的方法,整合深度学习和单细胞数据,用于细胞类型特异性的全转录组关联研究 | 结合先进的深度学习方法和单细胞数据,提高了细胞类型特异性表达的预测准确性,并捕捉了线性模型忽略的复杂基因调控规律 | 未提及具体样本量或数据集的局限性 | 改进全转录组关联研究(TWAS)框架,以更好地理解复杂疾病的细胞机制 | 2型糖尿病(T2D)和系统性红斑狼疮(SLE) | 生物信息学 | 2型糖尿病, 系统性红斑狼疮 | 深度学习, 单细胞数据分析 | ctPred(未明确具体模型类型如CNN、LSTM等) | 单细胞表达数据, DNA序列数据 | NA |
2903 | 2025-07-23 |
PanEcho: Complete AI-enabled echocardiography interpretation with multi-task deep learning
2025-Apr-16, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.11.16.24317431
PMID:40321248
|
research paper | 开发并评估了一个名为PanEcho的AI系统,用于自动化超声心动图的解读 | 提出了一个多任务深度学习模型PanEcho,能够自动化解读超声心动图,并在不同地理和时间范围内保持高准确性 | 研究为回顾性分析,可能需要在更多前瞻性研究中验证其性能 | 开发并评估一个AI系统,用于自动化超声心动图的解读 | 超声心动图视频和相关的39个标签和测量值 | digital pathology | cardiovascular disease | multi-task deep learning | deep learning | video | 1.2 million echocardiographic videos from 32,265 TTE studies of 24,405 patients |
2904 | 2025-07-23 |
Harnessing AlphaFold to reveal hERG channel conformational state secrets
2025-Apr-15, bioRxiv : the preprint server for biology
DOI:10.1101/2024.01.27.577468
PMID:38352360
|
研究论文 | 利用AlphaFold揭示hERG通道构象状态的秘密,以改进药物安全筛选和设计更安全的治疗方法 | 通过精心选择的结构模板引导AlphaFold预测不同的功能状态,揭示了hERG通道的失活机制和增强药物结合的新分子特征 | 需要进一步的实验验证来确认预测的构象状态和药物结合机制 | 深入理解hERG通道的结构和功能,以改进药物安全筛选和设计更安全的治疗方法 | hERG通道的构象状态及其与药物的相互作用 | 计算生物学 | 心血管疾病 | AlphaFold、分子对接、分子动力学模拟 | AlphaFold | 蛋白质结构数据 | NA |
2905 | 2025-07-23 |
Mapping individualized multi-scale hierarchical brain functional networks from fMRI by self-supervised deep learning
2025-Apr-07, bioRxiv : the preprint server for biology
DOI:10.1101/2025.04.07.647618
PMID:40291726
|
研究论文 | 本文提出了一种自监督深度学习框架,用于从fMRI数据中构建个体化的多尺度层次脑功能网络 | 首次通过自监督深度学习同时计算多尺度功能网络并表征其跨尺度层次结构 | 方法尚未在更广泛的神经精神疾病群体中进行验证 | 开发新方法以表征个体化多尺度脑功能网络的层次结构 | 人类大脑功能网络 | 神经影像分析 | 神经精神疾病 | fMRI, 自监督深度学习 | DL模型 | fMRI扫描数据 | Human Connectome Project数据及两个外部队列 |
2906 | 2025-07-23 |
MUC5B Genotype and Other Common Variants Are Associated with Computational Imaging Features of Usual Interstitial Pneumonia
2025-Apr, Annals of the American Thoracic Society
IF:6.8Q1
DOI:10.1513/AnnalsATS.202401-022OC
PMID:39591102
|
研究论文 | 本研究探讨了MUC5B基因型及其他常见变异与普通间质性肺炎(UIP)的计算成像特征之间的关联 | 首次使用深度学习技术自动评估CT图像,探索遗传风险与IPF患者成像表型的关系 | 样本量有限(329名IPF患者),且未发现遗传变异与视觉评估的UIP模式之间的关联 | 确定IPF患者的遗传风险特征是否能识别独特的计算成像表型 | 特发性肺纤维化(IPF)患者 | 数字病理学 | 肺纤维化 | CT扫描、深度学习 | 深度学习技术 | CT图像 | 329名IPF患者 |
2907 | 2025-07-23 |
A deep learning model for clinical outcome prediction using longitudinal inpatient electronic health records
2025-Apr, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooaf026
PMID:40213364
|
研究论文 | 开发了一种基于Transformer的临床结果预测模型TECO,用于利用住院电子健康记录预测ICU死亡率 | 提出了一种新型的Transformer-based Encounter-level Clinical Outcome (TECO)模型,在预测ICU死亡率方面优于现有专有指标和传统机器学习模型 | 需要进一步验证 | 开发深度学习模型预测ICU患者的临床结果 | COVID-19患者、急性呼吸窘迫综合征患者和败血症患者 | 机器学习 | COVID-19、急性呼吸窘迫综合征、败血症 | 深度学习 | Transformer | 电子健康记录(EHR) | COVID-19患者2579人,急性呼吸窘迫综合征患者2799人,败血症患者6622人 |
2908 | 2025-07-23 |
Mortality and Antibiotic Timing in Deep Learning-Derived Surviving Sepsis Campaign Risk Groups: A Multicenter Study
2025-Apr-01, Research square
DOI:10.21203/rs.3.rs-6123541/v1
PMID:40235491
|
研究论文 | 本研究利用深度学习模型对脓毒症患者进行风险分层,并探讨抗生素使用时机对不同风险组患者死亡率的影响 | 首次使用深度学习模型客观地将脓毒症患者分层到与SSC风险组相似的组别,并分析不同风险组中抗生素使用时机与死亡率的关系 | 未评估因果关系,需要更多前瞻性研究验证结果 | 评估基于深度学习风险分层的脓毒症患者抗生素使用时机与死亡率的关系 | 34,163名潜在脓毒症成年患者 | 数字病理学 | 脓毒症 | 深度学习 | DL | 临床数据 | 34,163名成年患者 |
2909 | 2025-07-23 |
SegCSR: WEAKLY-SUPERVISED CORTICAL SURFACES RECONSTRUCTION FROM BRAIN RIBBON SEGMENTATIONS
2025-Apr, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/isbi60581.2025.10980662
PMID:40655953
|
研究论文 | 提出了一种名为SegCSR的弱监督方法,用于从脑MRI带状分割中重建多个皮质表面 | SegCSR通过联合学习微分同胚流来对齐皮质带状分割图的边界,无需依赖传统CSR流程生成的伪地面真值作为监督 | 方法在具有挑战性的深皮质沟区域可能仍需进一步优化 | 开发一种不依赖伪地面真值的皮质表面重建方法 | 脑MRI图像中的皮质表面 | 数字病理 | NA | 深度学习 | NA | MRI图像 | 两个大规模脑MRI数据集 |
2910 | 2025-07-23 |
A Tunable Forced Alignment System Based on Deep Learning: Applications to Child Speech
2025-Mar-31, Journal of speech, language, and hearing research : JSLHR
DOI:10.1044/2024_JSLHR-24-00347
PMID:40163771
|
研究论文 | 开发了一种基于深度学习的可调谐强制对齐系统Wav2TextGrid,专为儿童语音设计 | 提出了一种可训练的、说话者自适应的神经强制对齐器,可直接根据手动对齐进行训练 | 仅针对3至6岁神经典型儿童语音进行了评估,未涵盖更广泛年龄或非典型语音 | 开发适用于儿童语音的高精度自动语音对齐工具 | 42名3至6岁神经典型儿童的语音数据及TIMIT语料库 | 自然语言处理 | NA | 深度学习 | 神经网络 | 语音 | 42名儿童语音数据及TIMIT语料库 |
2911 | 2025-07-23 |
Reducing hepatitis C diagnostic disparities with a fully automated deep learning-enabled microfluidic system for HCV antigen detection
2025-Mar-21, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adt3803
PMID:40106555
|
研究论文 | 开发了一种基于智能手机的完全自动化微流控系统,用于HCV抗原检测,以减少丙型肝炎诊断差异 | 结合铂纳米颗粒、深度学习图像处理和微流控技术,开发了一种高精度、便携式的HCV抗原检测设备 | 尚未获得FDA批准,且在高资源环境下的适用性未经验证 | 解决资源有限地区HCV诊断的及时性和准确性问题 | 丙型肝炎病毒(HCV)抗原检测 | 数字病理 | 丙型肝炎 | 微流控技术、深度学习图像处理 | 深度学习 | 图像 | NA |
2912 | 2025-07-23 |
StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest
2025-Mar-20, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-025-07926-y
PMID:40114030
|
research paper | 介绍了一种名为StainAI的深度学习工具,用于快速高通量分析小胶质细胞形态,并应用于心脏骤停和病毒感染模型研究 | 开发了StainAI工具,能够从小胶质细胞免疫组化图像中进行快速高通量分析,并计算感兴趣区域的激活分数 | 虽然在小鼠和非人灵长类动物模型中验证了其通用性,但尚未在人类数据上进行测试 | 研究小胶质细胞形态变化及其在神经炎症中的作用 | 小胶质细胞 | digital pathology | neuroinflammation | 免疫组化 | CNN | image | 数百万个小胶质细胞,来自大鼠和非人灵长类动物模型 |
2913 | 2025-07-23 |
Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage
2025-Mar-12, Cell genomics
IF:11.1Q1
DOI:10.1016/j.xgen.2025.100780
PMID:40020686
|
研究论文 | 该研究利用迁移学习预测转录因子剂量如何影响面部祖细胞中调控元件的染色质可及性 | 结合迁移学习和定量染色质响应测量,揭示了顺式调控代码的额外层次 | 研究仅针对TWIST1和SOX9两种转录因子,可能不适用于其他转录因子 | 揭示转录因子剂量对染色质可及性的定量响应的序列决定因素 | 面部祖细胞中的调控元件染色质可及性 | 机器学习 | NA | 迁移学习 | 深度学习模型 | 染色质可及性数据 | NA |
2914 | 2025-07-23 |
Tracking the Preclinical Progression of Transthyretin Amyloid Cardiomyopathy Using Artificial Intelligence-Enabled Electrocardiography and Echocardiography
2025-Feb-24, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.08.25.24312556
PMID:39252891
|
研究论文 | 利用人工智能技术通过心电图和超声心动图追踪转甲状腺素蛋白淀粉样心肌病的临床前进展 | 首次应用深度学习模型分析心电图和超声心动图数据,实现对转甲状腺素蛋白淀粉样心肌病的早期风险分层 | 研究为回顾性分析,样本来源仅限于两个医疗中心 | 开发可扩展的转甲状腺素蛋白淀粉样心肌病临床前监测策略 | 转诊接受核素心肌淀粉样蛋白检测的患者 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习模型 | 视频(TTE)、图像(ECG) | 内部队列984人(YNHHS),外部队列806人(HMH),共分析7,352次TTE和32,205次ECG数据 |
2915 | 2025-07-23 |
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images
2025-Feb-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82639-6
PMID:39952935
|
研究论文 | 本研究验证了Cellpose在自发荧光显微镜图像中的单细胞分割可靠性 | 开发了一种新的自发荧光训练模型(ATM),用于NAD(P)H强度图像的核分割,提高了分割的重复性和准确性 | 研究主要针对NAD(P)H图像,未涵盖其他类型的自发荧光图像 | 验证Cellpose在自发荧光显微镜图像中的单细胞分割性能 | PANC-1细胞和患者来源的癌症类器官(9例患者) | 数字病理学 | 癌症 | 多光子强度成像和荧光寿命成像显微镜(FLIM) | Cellpose | 图像 | PANC-1细胞和9例患者来源的癌症类器官 |
2916 | 2025-07-23 |
Top-DTI: Integrating Topological Deep Learning and Large Language Models for Drug Target Interaction Prediction
2025-Feb-08, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.07.637146
PMID:39975019
|
研究论文 | 提出了一种名为Top-DTI的新框架,通过整合拓扑深度学习和大型语言模型来预测药物靶点相互作用 | 结合拓扑数据分析和大型语言模型,利用持久同源性提取蛋白质接触图和药物分子图像的拓扑特征,同时通过蛋白质和药物的大型语言模型生成语义丰富的嵌入 | 未提及具体局限性 | 提高药物靶点相互作用预测的准确性和鲁棒性,为药物发现提供计算支持 | 药物靶点相互作用 | 机器学习 | NA | 拓扑数据分析(TDA)、大型语言模型(LLMs) | Top-DTI | 蛋白质接触图、药物分子图像、蛋白质序列、药物SMILES字符串 | 公共BioSNAP和Human DTI基准数据集 |
2917 | 2025-07-23 |
Deep learning to decode sites of RNA translation in normal and cancerous tissues
2025-Feb-02, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-56543-0
PMID:39894899
|
研究论文 | 本文介绍了一种基于transformer模型的方法RiboTIE,用于增强核糖体分析数据的分析,以解码RNA翻译位点在正常和癌变组织中的变化 | RiboTIE直接利用原始核糖体分析计数,以高精度和灵敏度检测翻译的开放阅读框(ORFs),在多种数据集上评估其性能 | 未提及具体的技术限制或数据集局限性 | 提高核糖体分析数据的分析准确性和深度,以更好地理解蛋白质合成及其在疾病中的意义 | 正常脑组织和髓母细胞瘤癌症样本中的RNA翻译调控 | 生物信息学 | 髓母细胞瘤 | Ribo-Seq | transformer模型 | 核糖体分析数据 | 多种数据集,包括正常脑组织和髓母细胞瘤样本 |
2918 | 2025-07-23 |
Cell Segmentation With Globally Optimized Boundaries (CSGO): A Deep Learning Pipeline for Whole-Cell Segmentation in Hematoxylin-and-Eosin-Stained Tissues
2025-Feb, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2024.102184
PMID:39528162
|
研究论文 | 开发了一种名为CSGO的深度学习流程,用于在H&E染色组织中进行全细胞分割 | 整合了细胞核和细胞膜分割算法,并采用基于能量的分水岭方法进行后处理,显著提高了分割性能 | 仅在5个外部数据集上进行了评估,样本多样性可能有限 | 开发自动化的全细胞分割方法以推进病理图像分析能力 | H&E染色组织中的细胞 | 数字病理学 | 肝癌 | 深度学习 | YOLO, U-Net | 图像 | 7例肝癌和11例正常肝组织样本,并在5个外部数据集(包括肝、肺和口腔疾病病例)上进行评估 |
2919 | 2025-07-23 |
Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry
2025-Feb, Cytometry. Part A : the journal of the International Society for Analytical Cytology
DOI:10.1002/cyto.a.24917
PMID:39982036
|
研究论文 | 本文介绍了一种基于最优传输数学的新技术,用于直接从成像数据中建模与核染色质结构相关的信息内容 | 提出了一种基于最优传输的形态测量(TBM)框架,能够表示每个细胞核相对于模板细胞核的全部信息内容,且对不同染色模式和成像协议具有鲁棒性 | NA | 开发一种定量测量方法,用于在不同数据集和癌症类型之间进行有意义的比较 | 癌细胞核的形态学特征 | 数字病理学 | 癌症(包括肝癌、甲状腺癌、肺癌和皮肤癌等) | 最优传输、特征提取、深度学习 | TBM框架 | 图像 | 大型数据集(如TCGA和人类蛋白质图谱) |
2920 | 2025-07-23 |
ProtoSAM-2D: 2D Semantic Segment Anything Model with Mask-Level Prototype-Learning and Distillation
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3047044
PMID:40678353
|
研究论文 | 提出了一种名为ProtoSAM-2D的增强型2D医学图像语义分割模型,结合了原型学习和蒸馏技术 | 通过引入掩码级原型预测机制和蒸馏方法,增强了SAM-Med2D的语义理解能力,同时保持了计算效率 | 目前仅针对2D医学图像,未涉及3D或其他复杂场景 | 提升医学图像语义分割的适应性和效率 | 2D医学图像中的多器官分割 | 数字病理 | NA | 深度学习、原型学习、知识蒸馏 | SAM增强模型(基于CNN架构) | 2D医学图像 | 未明确说明具体数量,但涉及两种成像模态的多器官分割任务 |