本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2921 | 2025-12-24 |
Deep learning framework for epidemiological forecasting: A study on COVID-19 cases and deaths in the Amazon state of Pará, Brazil
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0291138
PMID:37976312
|
研究论文 | 本研究提出了一个深度学习框架,用于预测巴西帕拉州COVID-19病例和死亡的时间序列数据 | 首次评估了TCN、TRANSFORMER、TFT、N-BEATS和N-HiTS等深度学习模型在COVID-19流行病预测中的应用,并结合ARIMA模型进行后处理优化 | 未明确说明数据不确定性、模型泛化能力及外部验证的具体限制 | 开发一个能够准确预测COVID-19病例和死亡的深度学习框架,以支持公共卫生决策 | 巴西帕拉州的COVID-19病例和死亡时间序列数据 | 机器学习 | COVID-19 | 时间序列分析 | TCN, TRANSFORMER, TFT, N-BEATS, N-HiTS, ARIMA | 时间序列数据 | NA | NA | TCN, TRANSFORMER, TFT, N-BEATS, N-HiTS | MSE, RMSE, MAPE, sMAPE, r2, Coefficient of Variation, 残差分析 | NA |
| 2922 | 2025-12-24 |
Finding the best trade-off between performance and interpretability in predicting hospital length of stay using structured and unstructured data
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0289795
PMID:38032876
|
研究论文 | 本研究旨在开发高性能的机器学习和深度学习模型来预测医院住院时长,同时提升模型的可解释性,并比较了仅使用结构化数据、非结构化数据以及混合数据训练的模型 | 通过融合结构化表格数据和非结构化临床文本数据,使用AutoGluon AutoML库和预训练的Bio Clinical BERT Transformer模型,在预测住院时长的性能与可解释性之间找到最佳平衡点 | 研究依赖于公开的MIMIC III数据库,可能无法完全代表其他医疗环境或患者群体 | 预测医院住院时长,并优化模型的性能与可解释性 | 重症监护患者 | 自然语言处理 | NA | 机器学习,深度学习,自然语言处理 | 集成树,神经网络,k-近邻,Transformer | 结构化表格数据,非结构化临床文本数据 | 使用MIMIC III数据库,具体样本数量未在摘要中明确说明 | AutoGluon | Bio Clinical BERT | ROC AUC,PRC AUC | NA |
| 2923 | 2025-12-24 |
CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0288663
PMID:38032915
|
研究论文 | 提出一种结合对比度受限自适应直方图均衡化(CLAHE)与胶囊网络(CapsNet)的模型(CLAHE-CapsNet),用于视网膜光学相干断层扫描(OCT)图像的疾病分类 | 首次将CLAHE作为网络层集成到胶囊网络中,以降低OCT图像噪声,并设计了三层卷积胶囊网络结构,避免了传统CNN池化操作导致的分辨率损失问题 | 仅使用单一数据集进行验证,未说明模型在其他OCT数据集上的泛化能力;未详细讨论计算复杂度与实时性表现 | 开发高效的计算机辅助诊断系统,帮助眼科医生快速准确地检测视网膜疾病 | 视网膜光学相干断层扫描(OCT)图像 | 计算机视觉 | 眼科疾病(CNV、DME、DRUSEN等) | 光学相干断层扫描(OCT) | 胶囊网络(CapsNet) | 图像(X-Ray JPEG格式) | 84,495张图像,分为4个类别(正常、CNV、DME、DRUSEN) | 未明确说明 | 三层卷积胶囊网络(CLAHE-CapsNet) | 准确率、灵敏度、精确度、特异性、AUC | NA |
| 2924 | 2025-12-24 |
Exploration of street space architectural color measurement based on street view big data and deep learning-A case study of Jiefang North Road Street in Tianjin
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0289305
PMID:38033019
|
研究论文 | 本研究提出了一种基于街景大数据和深度学习技术的城市街道空间建筑色彩高效、大规模测量方法 | 结合SegNet深度学习算法进行街景图像语义分割以提取建筑元素,并利用K-Means聚类模型识别建筑色彩,实现了建筑色彩测量从传统小规模、粗放方式向大规模、精细化研究的转变 | 研究仅以天津解放北路街道为案例,方法在其他城市或街道的普适性有待进一步验证;色彩测量结果的准确性主要通过问卷调查进行交叉验证,可能存在主观偏差 | 探索一种高效、大规模的城市空间建筑色彩测量方法,以支持街道空间环境色彩质量的评估与改造 | 城市街道空间的建筑色彩,以天津解放北路街道为实证研究对象 | 计算机视觉 | NA | 街景大数据采集、深度学习图像分割、色彩聚类分析 | CNN | 街景图像 | NA | NA | SegNet | 准确性(通过问卷调查交叉验证) | NA |
| 2925 | 2025-12-24 |
Deep learning hybrid model for analyzing and predicting the impact of imported malaria cases from Africa on the rise of Plasmodium falciparum in China before and during the COVID-19 pandemic
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0287702
PMID:38055693
|
研究论文 | 本研究通过构建ARIMA-GRU混合模型,分析了COVID-19大流行前后非洲输入性疟疾病例对中国恶性疟原虫病例上升的影响,并预测了其趋势 | 提出了结合统计模型(ARIMA)与深度学习(GRU)的混合方法,用于模拟中国恶性疟原虫病例的复燃,并首次在大流行背景下系统评估了国际旅行限制对输入性疟疾传播的影响 | 研究时间范围存在数据缺口(2019年至2020年初),且模型主要基于历史月度数据,可能未完全捕捉突发性公共卫生事件的所有动态因素 | 评估非洲输入性疟疾病例对中国恶性疟原虫病例上升的影响,并预测大流行前后的疾病趋势 | 中国31个省份的恶性疟原虫病例及死亡数据,以及来自45个非洲国家的输入性疟疾病例数据 | 机器学习 | 疟疾 | 时间序列分析,深度学习建模 | 混合模型(ARIMA与GRU) | 时间序列数据(月度病例数) | 2004年至2016年月度数据用于建模,2012年至2018年及2020年10月至2021年5月数据用于关联分析 | 未明确提及 | ARIMA, GRU | 预测准确率 | NA |
| 2926 | 2025-12-24 |
CFM-YOLOv5:CFPNet moudle and muti-target prediction head incorporating YOLOv5 for metal surface defect detection
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0289179
PMID:38060568
|
研究论文 | 提出了一种基于改进YOLOv5算法的深度学习缺陷检测方法,用于金属表面缺陷检测 | 在特征增强部分用EVC模块替换标准Transformer编码器的多头自注意力模块以提升特征提取能力,并在预测部分增加小目标检测头以应对目标尺度剧烈变化 | NA | 解决金属表面缺陷检测领域人工检测效率低的问题 | 金属表面缺陷 | 计算机视觉 | NA | 深度学习 | YOLOv5 | 图像 | NA | PyTorch | YOLOv5, Transformer | mAP, FPS | NA |
| 2927 | 2025-12-24 |
A comparative analysis of converters of tabular data into image for the classification of Arboviruses using Convolutional Neural Networks
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0295598
PMID:38064477
|
研究论文 | 本文比较了将表格数据转换为图像的不同方法,用于基于卷积神经网络的虫媒病毒分类 | 通过比较多种表格数据到图像的转换器,并优化CNN模型,展示了CNN在转换后图像数据上能达到与优化XGBoost相当的性能 | CNN模型的进一步随机搜索优化未能显著提升性能,且研究可能受限于特定数据集和转换方法 | 比较表格数据到图像的转换器性能,并优化CNN模型用于虫媒病毒分类 | 虫媒病毒数据 | 机器学习 | 虫媒病毒感染 | 表格数据到图像的转换技术 | CNN, XGBoost | 表格数据,图像数据 | NA | NA | 基础CNN(单卷积层) | 准确率,精确率,召回率,F1分数,AUC | NA |
| 2928 | 2025-12-24 |
Enhancing breast ultrasound segmentation through fine-tuning and optimization techniques: Sharp attention UNet
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0289195
PMID:38091358
|
研究论文 | 本文通过比较图像预处理、优化技术和微调不同UNet分割模型的效果,提出了一种结合Sharp UNet和Attention UNet的新型模型Sharp Attention UNet,以提升乳腺超声图像分割性能 | 设计了一种新型模型Sharp Attention UNet,结合了Sharp UNet和Attention UNet的优点,并在乳腺超声图像分割中取得了优于其他模型的性能 | NA | 提升乳腺超声图像分割的准确性,特别是在良恶性肿块分割和无肿块区域识别方面 | 乳腺超声图像 | 计算机视觉 | 乳腺癌 | 深度学习 | CNN | 图像 | NA | NA | UNet, Sharp UNet, Attention UNet, Sharp Attention UNet | Dice系数, 特异性, 敏感性, F1分数 | NA |
| 2929 | 2025-12-24 |
A comprehensive framework for advanced protein classification and function prediction using synergistic approaches: Integrating bispectral analysis, machine learning, and deep learning
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0295805
PMID:38096313
|
研究论文 | 提出了一种结合双谱分析、机器学习和深度学习的新型框架,用于蛋白质分类和功能预测 | 首次将双谱特征与深度学习技术结合用于蛋白质序列分析,并采用多种CNN拓扑结构进行特征提取和选择 | 未具体说明所使用蛋白质数据集的详细规模和多样性,也未讨论方法在计算资源消耗方面的表现 | 开发更高效准确的蛋白质家族识别方法,以改进蛋白质功能预测和分类 | 蛋白质序列 | 机器学习 | NA | 双谱分析 | CNN, 机器学习算法 | 序列数据 | 多个蛋白质数据集(未指定具体数量) | NA | 多种拓扑结构的卷积神经网络 | 分类质量指标(未具体说明) | NA |
| 2930 | 2025-12-24 |
Diagnosis of COVID-19 with simultaneous accurate prediction of cardiac abnormalities from chest computed tomographic images
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0290494
PMID:38096254
|
研究论文 | 本研究开发了一种基于胸部CT图像的深度学习模型,用于同时诊断COVID-19并预测相关心血管异常 | 首次将迁移学习与CNN结合,实现从同一CT图像中区分COVID-19与其他肺炎,并自动预测COVID-19患者的心血管疾病风险,准确率分别达到99.2%和97.97% | 未明确说明样本来源的多样性或模型在外部验证集上的泛化能力 | 开发一种双重筛查诊断工具,通过胸部CT图像诊断COVID-19并预测其相关心血管并发症 | COVID-19患者、其他肺炎患者及健康个体的胸部CT图像 | 计算机视觉 | COVID-19 | 胸部计算机断层扫描(CT)成像 | CNN | 图像 | NA | NA | NA | 准确率 | NA |
| 2931 | 2025-12-24 |
A study of deep active learning methods to reduce labelling efforts in biomedical relation extraction
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0292356
PMID:38100453
|
研究论文 | 本研究探讨了深度主动学习方法在减少生物医学关系提取任务中标注工作量的应用 | 首次系统性地在七个生物医学关系提取数据集上对六种主动学习策略进行基准测试,并评估其学习曲线下面积及中间结果 | 研究仅基于PubMedBERT模型进行实验,未扩展到其他基础模型;且主动学习策略的泛化能力在不同数据集间可能存在差异 | 通过主动学习策略减少生物医学关系提取任务中的标注需求,提高数据标注效率 | 生物医学关系提取任务中的标注数据 | 自然语言处理 | NA | 主动学习 | BERT | 文本 | 七个生物医学关系提取数据集 | PyTorch, Transformers | PubMedBERT | F1分数, 准确率, 精确率, 召回率, 学习曲线下面积 | NA |
| 2932 | 2025-12-24 |
Positional relationship between ball and fingers for accurate baseball pitching
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0290042
PMID:38113282
|
研究论文 | 本研究探讨了棒球投球中球与手指位置关系对释放角变异性的影响 | 首次详细研究了手指位置与释放角变异性之间的关系,并采用基于深度学习的自动图像识别技术精确获取手指位置 | NA | 研究棒球投球准确性,特别是减少释放角变异性以提高投球位置一致性 | 棒球投手的手指与球的位置关系 | 计算机视觉 | NA | 深度学习自动图像识别技术 | NA | 图像 | NA | NA | NA | NA | NA |
| 2933 | 2025-12-23 |
Multimodal-based deep learning detected disrupted precuneus connectivity and its related genetic profiles for predicting adults with ADHD
2026-Mar-01, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.120821
PMID:41354103
|
研究论文 | 本研究采用基于多模态数据的图卷积网络模型预测成人ADHD,并通过下游分析揭示相关病理生理机制 | 首次将多模态神经影像遗传学数据与图卷积网络结合,用于成人ADHD的预测和机制解释,并识别了关键脑区功能连接及其相关遗传特征 | 样本量相对有限,模型准确率有待进一步提升,且结果需在独立队列中验证 | 通过整合神经影像和遗传数据,提高成人注意缺陷多动障碍的诊断准确性和病理生理理解 | 成人注意缺陷多动障碍患者和健康对照者 | 神经影像遗传学 | 注意缺陷多动障碍 | 功能磁共振成像,基因组学 | 图卷积网络 | 功能磁共振成像数据,基因组数据 | 258名成人ADHD患者和243名对照者 | NA | Edge-Variational Graph Convolution Network | 准确率 | NA |
| 2934 | 2025-12-23 |
From wastewater to epidemiological insights: A systematic review of modeling strategies for infectious disease surveillance
2026-Jan-15, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2025.124977
PMID:41260128
|
综述 | 本文系统综述了利用废水监测数据进行传染病指标估计与预测的现有建模策略 | 提供了基于废水监测数据的建模方法的全面分类与批判性评估,强调了跨流行病学和地理背景的模型可迁移性这一关键问题 | 模型本身存在局限,废水数据存在固有问题,分析流程中临床结果与解释变量的选择、时间对齐、数据预处理、性能评估及结果可解释性等方面存在挑战 | 支持开发一个稳健且可推广的利用废水数据进行流行病学监测的系统 | 废水监测数据及其在传染病指标估计与预测中的应用 | 机器学习 | 传染病 | 废水监测 | 区室模型, 回归模型, 机器学习, 深度学习 | 废水数据 | NA | NA | NA | NA | NA |
| 2935 | 2025-12-23 |
Feasibility of Dose Reduction in the Context of Preoperative Diagnostics in Cochlear Implant Surgery With a Photon-Counting Detector CT and Deep Learning-Supported Denoising
2026-Jan-01, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology
IF:1.9Q2
DOI:10.1097/MAO.0000000000004647
PMID:41151028
|
研究论文 | 本研究探讨了光子计数探测器CT结合深度学习去噪在降低人工耳蜗植入术前诊断辐射剂量方面的可行性 | 首次将光子计数探测器CT与深度学习去噪算法结合,评估在人工耳蜗植入规划中实现显著辐射剂量降低的可能性 | 研究样本量较小(仅4具遗体捐赠者),且深度学习去噪在低于50%剂量水平时效果有限 | 评估在人工耳蜗植入手术规划中,通过光子计数探测器CT和深度学习去噪降低辐射剂量的可行性 | 人工耳蜗解剖结构,特别是耳蜗导管长度测量 | 数字病理学 | 听力障碍 | 光子计数探测器CT扫描,深度学习去噪 | 深度学习算法 | CT图像 | 4具无内耳畸形的遗体捐赠者 | NA | ClariAce | Bland-Altman图,耳蜗导管长度测量准确性 | NA |
| 2936 | 2025-12-23 |
Computer Vision-based Extraction of Structured Data From Scanned Audiograms in the Electronic Health Record
2026-Jan-01, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology
IF:1.9Q2
DOI:10.1097/MAO.0000000000004679
PMID:41191411
|
研究论文 | 开发并评估了一种基于计算机视觉的方法,用于从电子健康记录中存储的扫描听力图测试表中提取结构化听力阈值数据 | 提出了一种不依赖深度学习或手动预处理的轮廓分析计算机视觉流程,用于从扫描听力图中自动提取纯音阈值数据,为大规模听力研究提供了可扩展的解决方案 | 研究仅基于907份手填听力图测试表,且测试集规模较小(30份听力图),可能限制了方法的泛化能力评估 | 开发一种计算机视觉方法,以从电子健康记录中的扫描听力图测试表中自动提取结构化听力阈值数据 | 907份手填听力图测试表,涵盖正常听力、双侧感音神经性、不对称感音神经性、传导性和混合性听力损失配置 | 计算机视觉 | 听力损失 | 轮廓分析、光学字符识别 | NA | 图像 | 907份手填听力图测试表(训练集877份,测试集30份) | OpenCV | NA | 平均绝对误差, 准确率 | NA |
| 2937 | 2025-12-23 |
Exploring environmental sustainability of artificial intelligence in radiology: A scoping review
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112558
PMID:41275851
|
综述 | 本文通过范围综述,综合分析了放射学中人工智能的环境可持续性相关文献,并总结了减轻其环境影响的关键策略 | 首次对放射学领域人工智能的环境可持续性研究进行系统性综述,识别了关键的环境影响指标(如能耗、碳足迹)并提出了具体的缓解策略 | 纳入的研究数量较少(仅13篇),且现有文献整体匮乏,可能导致结论的代表性有限 | 综合现有文献,探讨放射学中人工智能的环境可持续性,并为未来研究和实践提供指导 | 2014年至2024年间发表的、关注人工智能在医学影像中环境可持续性的英文和法文学术文献 | 数字病理 | NA | NA | CNN, Vision Transformer, Large Language Model | 医学影像(如CT, MRI) | NA | NA | 轻量级模型架构 | CO2当量排放、训练时间、电力使用效率、等效汽车行驶距离、能源需求、耗水量 | GPU, TPU, CPU, 云计算 |
| 2938 | 2025-12-23 |
Sequential and ensemble hybrid approaches for left ventricle segmentation in cardiac MR: A systematic mapping
2026-Jan-01, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.111337
PMID:41317598
|
综述 | 本文系统回顾了心脏磁共振图像中左心室分割的混合方法,提出了一种新的分类体系 | 提出将混合方法分为顺序型和集成型的新分类,并分析了不同组合的优势与挑战 | 当前评估方法存在不足,缺乏充分的评估指标、泛化性分析和统计显著性检验 | 系统回顾和分类心脏磁共振图像中左心室分割的混合方法,以改善现有方法的局限性 | 心脏磁共振图像中的左心室分割 | 医学图像分析 | 心血管疾病 | 心脏磁共振成像 | 深度学习网络 | 图像 | NA | NA | NA | NA | NA |
| 2939 | 2025-12-23 |
AI-driven transfer learning and classical molecular dynamics for strategic therapeutic repurposing and rational design of antiviral peptides targeting monkeypox virus DNA polymerase
2026-Jan-01, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.111372
PMID:41360016
|
研究论文 | 本研究结合AI驱动的迁移学习与经典分子动力学,筛选FDA批准药物并设计新型抗病毒多肽,以靶向猴痘病毒DNA聚合酶进行药物重定位和理性设计 | 开发了集成深度学习药效团模型与自动化多肽生成AI流程的新方法,首次将活性位点残基与知识引导的氨基酸选择相结合用于抗病毒多肽设计 | CFC多肽的ADMET预测显示其渗透性和口服生物利用度存在局限性,且研究尚未进行体外或体内实验验证 | 快速识别针对猴痘病毒DNA聚合酶的新型抗病毒治疗药物和设计抗病毒多肽 | 猴痘病毒DNA聚合酶 | 计算生物学 | 猴痘病毒感染 | 深度学习药效团模型、分子动力学模拟、MMGBSA分析、ADMET预测 | 深度学习药效团模型、AI多肽生成流程 | 分子结构数据、蛋白质序列数据 | 1974种FDA批准药物库 | NA | NA | 结合亲和力(kcal/mol)、结合能(kcal/mol)、分子动力学稳定性 | NA |
| 2940 | 2025-12-23 |
Unraveling blood pressure estimation with a deep learning approach using multiple embeddings
2026-Jan-01, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.111377
PMID:41365110
|
研究论文 | 本文提出了一种无需校准的深度学习框架,利用脉搏波传导时间及相似性特征,通过注意力引导的卷积神经网络进行血压估计 | 引入了基于欧几里得和曼哈顿距离矩阵的相似性特征,以增强模式识别并揭示数据中的隐藏模式,结合注意力引导的卷积神经网络进行处理 | NA | 开发一种无需校准、具有强泛化能力和实时兼容性的血压估计方法 | 血压(收缩压和舒张压) | 机器学习 | 心血管疾病 | 脉搏波传导时间计算 | CNN | 生理信号数据(心电图、光电容积脉搏波) | 三个数据集:Cabrini Hospital, PTT PPG, MIMIC-II | NA | 注意力引导的卷积神经网络 | 相关系数R, 平均绝对误差, 符合医疗器械促进协会标准, 英国高血压学会等级 | NA |