深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 27664 篇文献,本页显示第 2921 - 2940 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2921 2025-06-04
Deep Learning Pipeline for Automated Assessment of Distances Between Tonsillar Tumors and the Internal Carotid Artery
2025-Jun-03, Head & neck
research paper 提出了一种深度学习流程,用于自动评估扁桃体肿瘤与颈内动脉之间的距离 使用nnU-Net框架自动分割扁桃体肿瘤和颈内动脉,并构建工具自动计算两者间的最小距离 样本量较小(96例患者),且仅基于CT扫描数据 开发自动化工具以辅助术前评估扁桃体肿瘤与颈内动脉的距离 扁桃体肿瘤(TT)和颈内动脉(ICA) digital pathology tonsillar tumors CT扫描 nnU-Net image 96例患者的CT扫描数据
2922 2025-06-04
Automated Classification of Cervical Spinal Stenosis using Deep Learning on CT Scans
2025-Jun-03, Spine IF:2.6Q1
research paper 开发并验证了一种基于CT扫描的深度学习模型,用于诊断颈椎管狭窄症(CSS) 利用深度学习模型提高CT图像在CSS诊断中的效能,作为MRI的替代方案 研究为回顾性设计,可能影响模型的泛化能力 开发一种基于CT的深度学习模型,用于CSS的自动化诊断 颈椎管狭窄症(CSS)患者 digital pathology geriatric disease CT扫描 Faster R-CNN, CNN image 未明确提及具体样本数量,但按8:1:1比例分为训练集、验证集和测试集
2923 2025-06-04
AI-Driven Biomarker Discovery and Personalized Allergy Treatment: Utilizing Machine Learning and NGS
2025-Jun-03, Current allergy and asthma reports IF:5.4Q1
review 探讨人工智能(AI)和下一代测序(NGS)在过敏诊断和治疗中的变革潜力 结合AI驱动的算法和NGS技术,识别复杂的分子模式和预测性标志物,推动过敏诊断和治疗的个性化 数据整合和临床实施方面的挑战 提升过敏疾病的生物标志物发现、患者分层和个性化管理策略的精确性 过敏疾病 machine learning allergy NGS, single-cell RNA sequencing machine learning, deep learning molecular data NA
2924 2025-06-04
Deep learning-based automatic segmentation of arterial vessel walls and plaques in MR vessel wall images for quantitative assessment
2025-Jun-03, European radiology IF:4.7Q1
研究论文 开发并验证了一种基于深度学习的自动方法,用于MR血管壁图像中血管壁和动脉粥样硬化斑块的分割以进行定量评估 提出了名为Vessel-SegNet的纯学习型CNN用于分割管腔和血管壁,并利用血管壁先验(包括手动先验和基于Tversky损失的自动先验)提高斑块分割的准确性 由于缺乏对其他设备、人群和解剖学研究的测试,研究结果的可靠性仍需进一步探索 提高血管成分(包括管腔、血管壁和斑块)分割的准确性和效率,以进行定量评估 193名来自五个中心的动脉粥样硬化斑块患者 数字病理 心血管疾病 T1加权MRI扫描 CNN 图像 193名患者(107名用于训练和验证,39名用于内部测试,47名用于外部测试)
2925 2025-06-04
Effect of contrast enhancement on diagnosis of interstitial lung abnormality in automatic quantitative CT measurement
2025-Jun-03, European radiology IF:4.7Q1
research paper 研究对比增强对自动定量CT测量中间质性肺异常(ILA)诊断的影响 首次探讨对比增强对自动定量CT测量ILA的影响,并评估其诊断性能 研究为回顾性分析,可能存在选择偏倚 评估对比增强对自动定量CT测量ILA诊断的影响 接受胸部CT检查的患者 digital pathology lung disease CT扫描 deep learning-based automated software CT图像 1134名患者
2926 2025-06-04
Deep learning model for differentiating thyroid eye disease and orbital myositis on computed tomography (CT) imaging
2025-Jun-03, Orbit (Amsterdam, Netherlands)
研究论文 开发了一种基于深度学习模型的眼眶CT成像技术,用于准确区分甲状腺眼病和眼眶肌炎 利用深度学习模型在单张冠状眼眶CT图像上高精度区分甲状腺眼病和眼眶肌炎,不仅基于眼外肌增大,还利用了其他显著特征 回顾性单中心研究,样本量相对较小(192名患者) 开发一种能够准确区分甲状腺眼病和眼眶肌炎的深度学习模型 甲状腺眼病(TED)、眼眶肌炎患者及正常对照组的眼眶CT图像 计算机视觉 甲状腺眼病、眼眶肌炎 CT成像 VGG-16网络 图像 192名患者(110名TED、51名眼眶肌炎、31名对照组)的1628张图像
2927 2025-06-04
Deep Learning-Based Decision Support System for Nurse Staff in Hospitals
2025-Jun-02, Big data IF:2.6Q2
研究论文 本文探讨了基于深度学习的临床决策支持系统(DL-CDSS)在医院护士中的应用,旨在通过分析复杂的临床数据辅助护士做出更明智的护理决策 利用先进的神经网络架构分析临床数据,提供实时治疗建议,优化护理工作流程 面临数据整合、模型可解释性和用户界面设计等挑战 促进医院人力资源信息化管理,提升医院信息技术应用水平 医院护士 医疗信息技术 NA 深度学习 神经网络 临床数据(患者记录、生命体征、诊断报告等) 大规模医院信息系统数据集
2928 2025-06-04
Deep Learning for Low-Light Vision: A Comprehensive Survey
2025-Jun-02, IEEE transactions on neural networks and learning systems IF:10.2Q1
综述 本文全面综述了低光视觉领域的最新进展,包括方法、数据集和评估指标,分为视觉质量驱动和识别质量驱动两个方面 提供了低光视觉领域的全面调查,涵盖了视觉质量驱动和识别质量驱动两个方面,并对不同方法在广泛采用的低光视觉相关数据集上进行了定量基准测试 未提及具体的实验限制或数据集的局限性 综述低光视觉领域的最新进展,包括方法、数据集和评估指标 低光视觉相关的方法、数据集和评估指标 计算机视觉 NA 深度学习 NA 图像 多个广泛采用的低光视觉相关数据集
2929 2025-06-04
Disease-Grading Networks with Asymmetric Gaussian Distribution for Medical Imaging
2025-Jun-02, IEEE transactions on medical imaging IF:8.9Q1
research paper 提出了一种基于样本感知非对称高斯标签分布的疾病分级网络DGN-AGLD,用于医学影像分析 引入了样本感知的非对称高斯标签分布,能够学习并预测控制高斯分布不对称性的参数,从而在同一类别内实现不同的标签分布 未明确提及具体局限性,但暗示现有方法在标签分布假设和超参数确定方面存在不足 提高医学影像中疾病分级的准确性和效率 医学影像数据 digital pathology diabetic retinopathy deep learning DGN-AGLD image 四个疾病数据集,包括IDRiD数据集
2930 2025-06-04
Hyperspectral Imaging for Predicting Bladder Cancer Grading: A Novel Diagnostic Approach
2025-Jun-02, Journal of biophotonics IF:2.0Q3
研究论文 本文提出了一种基于深度学习的多模态融合模型RVCK-net,结合高光谱成像和病理图像,用于膀胱癌的精确分级 提出了一种新型的多模态融合模型RVCK-net,整合高光谱成像和病理图像,利用空间和光谱信息,通过自适应融合机制实现稳健可靠的分类 NA 提高膀胱癌分级的准确性和早期诊断能力 膀胱癌 数字病理学 膀胱癌 高光谱成像(HSI) RVCK-net 图像 NA
2931 2025-06-04
Performance Comparison of Machine Learning Using Radiomic Features and CNN-Based Deep Learning in Benign and Malignant Classification of Vertebral Compression Fractures Using CT Scans
2025-Jun-02, Journal of imaging informatics in medicine
研究论文 本研究比较了基于放射组学特征的机器学习和基于CNN的深度学习在CT扫描中对良恶性椎体压缩骨折分类的性能 首次在CT扫描中比较了放射组学特征和深度学习模型在椎体压缩骨折分类中的性能,并展示了深度学习在AUC和精确度上的略微优势 回顾性单中心数据,可能存在选择偏差 评估和比较不同机器学习方法在椎体压缩骨折良恶性分类中的性能 椎体压缩骨折 医学影像分析 椎体压缩骨折 CT扫描 XGBoost, SVM, KNN, Random Forest, 3D CNN 医学影像 447例椎体压缩骨折(196良性,251恶性)来自286名患者
2932 2025-06-04
Enhanced Vision Transformer with Custom Attention Mechanism for Automated Idiopathic Scoliosis Classification
2025-Jun-02, Journal of imaging informatics in medicine
研究论文 本文提出了一种增强型ViT模型,用于自动化特发性脊柱侧凸分类,采用自定义注意力机制替代标准多头注意力机制 使用自定义注意力机制改进ViT模型,在脊柱侧凸分类中实现更高的准确率 研究仅基于单一医疗中心的数据集,可能影响模型的泛化能力 开发一个能够客观评估脊柱侧凸诊断的深度学习系统 特发性脊柱侧凸患者 计算机视觉 脊柱侧凸 深度学习 ViT(Vision Transformer) X光图像 1456名患者的数据集,包含7个不同类别
2933 2025-06-04
Robust Detection of Out-of-Distribution Shifts in Chest X-ray Imaging
2025-Jun-02, Journal of imaging informatics in medicine
research paper 本研究开发了一种基于GAN的框架,用于检测胸部X射线中的分布外(OOD)情况,以提高诊断准确性 通过潜在空间优化和Kolmogorov-Smirnov统计测试,学习正面视图的特征分布,生成相似性分数以可靠识别OOD病例 NA 提高胸部X射线中分布外情况的检测可靠性,以增强深度学习系统的临床适用性 胸部X射线影像 computer vision NA GAN, Kolmogorov-Smirnov统计测试 GAN image MIMIC-CXR数据集
2934 2025-06-04
Enhancing the Feature Representation of Protein Sequence Descriptors in Protein-Protein Interaction Prediction
2025-Jun-02, Interdisciplinary sciences, computational life sciences
研究论文 本研究旨在通过开发新的蛋白质序列描述符来增强蛋白质-蛋白质相互作用(PPI)预测中的特征表示能力 基于六种已知序列描述符开发了新描述符,显著提升了PPI预测性能,并发布了包含51种特征向量的Python软件包ProtSeqDesc 未明确说明新描述符在所有类型蛋白质相互作用预测中的泛化能力 提升蛋白质序列的特征表示质量以改善蛋白质-蛋白质相互作用预测 蛋白质序列及其相互作用 生物信息学 NA 机器学习、深度学习 NA 蛋白质序列数据 多个PPI数据集(未明确具体数量)
2935 2025-06-04
Robust multi-coil MRI reconstruction via self-supervised denoising
2025-Jun-02, Magnetic resonance in medicine IF:3.0Q2
research paper 研究通过自监督去噪作为预处理步骤,提升深度学习在多线圈MRI重建中的性能 利用GSURE进行自监督去噪,并评估其对DPMs和MoDL两种深度学习重建方法的影响 实验仅针对T2加权脑部和脂肪抑制质子密度膝部扫描,未涵盖其他MRI类型 提升深度学习在多线圈MRI重建中的质量和效率 多线圈MRI数据 machine learning NA Generalized Stein's Unbiased Risk Estimate (GSURE), Diffusion Probabilistic Models (DPMs), Model-Based Deep Learning (MoDL) DPMs, MoDL MRI图像 T2加权脑部和脂肪抑制质子密度膝部扫描数据
2936 2025-06-04
A Scalable Deep Learning Approach for Real-Time Multivariate Monitoring of Biopharmaceutical Processes With No Prior Product-Specific History
2025-Jun-02, Biotechnology and bioengineering IF:3.5Q2
research paper 提出了一种新型实时深度学习框架,用于监测无产品特定历史记录的生物制药过程健康状态 结合自动编码器(AEs)和多阶段实时数据处理算法,开发了实时异常检测和根源识别的新方法 未明确提及具体局限性 开发无需产品特定历史记录的生物制药过程实时监测方法 生物制药过程中的细胞培养制造过程,特别是单克隆抗体的生产 machine learning NA deep learning, autoencoders (AEs) autoencoders (AEs) time-series data 未明确提及具体样本数量
2937 2025-06-04
CDSNet: An automated method for assessing growth stages from various anatomical regions in lateral cephalograms based on deep learning
2025-Jun, Journal of the World federation of orthodontists IF:2.6Q1
研究论文 本文介绍了一种基于深度学习的自动化方法CDSNet,用于从侧位头颅X光片中评估生长阶段 提出了一种可解释的深度学习模型CDSNet,结合颈椎、牙列和额窦多个解剖区域来评估生长阶段,相比传统CVM方法有显著提升 研究主要关注处于两个生长阶段边界附近、特征不明显的患者,可能对其他情况适用性有限 开发一种自动化方法来准确评估患者的生长阶段,辅助正畸治疗 接受正畸治疗患者的侧位头颅X光片和手腕X光片 数字病理 正畸相关生长异常 深度学习 CDSNet(自定义CNN模型) 医学影像(X光片) 1732对侧位头颅X光片和手腕X光片
2938 2025-06-04
External validation and performance analysis of a deep learning-based model for the detection of intracranial hemorrhage
2025-Jun, The neuroradiology journal
研究论文 本研究旨在验证一种FDA批准的深度学习模型在真实世界异质临床数据集中检测颅内出血(ICH)的性能,并分析患者风险因素对模型表现的影响 在真实世界异质临床数据集上验证深度学习模型性能,并首次探讨患者风险因素对模型表现的影响 研究仅基于单一机构的5600例CT扫描数据,可能存在选择偏倚 验证深度学习模型在颅内出血检测中的性能并分析影响因素 5600例非增强头部CT扫描数据 数字病理 颅内出血 深度学习 深度学习模型(未明确具体架构) 医学影像(CT扫描) 5600例非增强头部CT扫描(急诊、住院和门诊患者)
2939 2025-06-04
Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images
2025-Jun, Cardiovascular engineering and technology IF:1.6Q4
research paper 该研究提出了一种使用3D PSPNET在CCTA图像上进行冠状动脉自动分割的方法,结合了全局处理和基于补丁的处理方法 将2D PSPNet改进为3D PSPNet,用于从3D CCTA图像中分割冠状动脉,并评估了全局处理和基于补丁的处理方法的网络性能 仅使用了ImageCAS数据集的200张图像子集进行实验,样本量较小 提高冠状动脉疾病的临床诊断和治疗准确性,如狭窄检测和斑块分析 冠状动脉 digital pathology cardiovascular disease 3D Coronary Computed Tomography Angiography (CCTA) 3D PSPNet image 200张来自ImageCAS数据集的图像
2940 2025-06-04
Investigation of Inter-Patient, Intra-Patient, and Patient-Specific Based Training in Deep Learning for Classification of Heartbeat Arrhythmia
2025-Jun, Cardiovascular engineering and technology IF:1.6Q4
研究论文 本研究探讨了在深度学习中心跳心律失常分类中,患者间、患者内和患者特定训练模式对最终结果的影响 首次详细比较了三种不同数据分配范式(患者间、患者内和患者特定)对基于CNN的心律失常分类模型性能的影响 研究仅使用了标准心律失常数据集,未在其他数据集上验证结果的普适性 评估不同数据分配范式对深度学习模型心律失常分类性能的影响 心电图(ECG)信号和心跳心律失常分类 机器学习 心血管疾病 深度学习 CNN ECG信号 标准心律失常数据集(具体数量未提及)
回到顶部