本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
281 | 2025-07-24 |
World of Forms: Deformable geometric templates for one-shot surface meshing in coronary CT angiography
2025-Jul, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103582
PMID:40318517
|
研究论文 | 提出了一种基于几何先验的数据高效深度学习方法,用于直接生成3D解剖对象表面网格 | 采用多分辨率图神经网络和几何模板变形方法,结合新型掩码自编码器预训练策略,提高了在低数据量情况下的网格生成准确性和拓扑一致性 | 方法性能在极低数据量情况下的表现尚未充分验证 | 改进医学图像表面网格生成方法,提高在有限数据情况下的性能 | 冠状动脉CT血管造影中的心包、左心室腔和左心室心肌 | 数字病理 | 心血管疾病 | 深度学习 | 多分辨率图神经网络 | 3D医学图像 | 未明确说明样本数量 |
282 | 2025-07-24 |
Regularized Gradient Statistics Improve Generative Deep Learning Models of Super Resolution Microscopy
2025-Jul, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202401900
PMID:40454902
|
research paper | 研究通过正则化信号梯度统计来改进超分辨率荧光显微镜的深度学习模型生成的图像质量 | 提出在训练数据集中正则化图像,使其梯度和拉普拉斯统计更接近自然场景图像的预期统计,从而改进生成图像的质量 | 该正则化方法仅适用于具有适当先验的图像,如在BioSR数据集中仅为丝状结构图像 | 改进超分辨率显微镜深度学习模型的生成图像质量 | 超分辨率荧光显微镜图像 | computer vision | NA | 深度学习 | Conditional Variational Diffusion Model (CVDM) | image | BioSR数据集中的匹配对(衍射极限和超分辨率图像) |
283 | 2025-07-24 |
Deep Learning Based Models for CRISPR/Cas Off-Target Prediction
2025-Jul, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202500122
PMID:40468633
|
综述 | 本文回顾了基于深度学习的CRISPR/Cas脱靶预测工具,评估了六种深度学习模型在公共数据集上的表现 | 强调了将经过验证的脱靶数据整合到模型训练中以提高预测性能的重要性,并评估了六种深度学习模型的综合表现 | 没有一种模型在所有场景中都表现最佳,且数据集高度不平衡 | 改进CRISPR/Cas脱靶位点预测,确保更安全的基因组编辑应用 | CRISPR/Cas脱靶位点预测工具 | 机器学习 | NA | CRISPR/Cas基因组编辑技术 | CRISPR-Net, CRISPR-IP, R-CRISPR, CRISPR-M, CrisprDNT, Crispr-SGRU | 序列数据 | 六个公共数据集和CRISPRoffT数据库中的验证数据 |
284 | 2025-07-24 |
Improving the Robustness of Deep Learning Models in Predicting Hematoma Expansion from Admission Head CT
2025-Jul-01, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8650
PMID:39794133
|
研究论文 | 本研究探讨了通过对抗训练和输入修改提高深度学习模型在预测急性脑出血患者血肿扩张方面的鲁棒性 | 使用对抗训练和Otsu多阈值分割作为额外输入来提高深度学习模型的鲁棒性 | 对抗训练对FGSM攻击的鲁棒性提升有限,对PGD类型攻击的交叉鲁棒性有限 | 提高深度学习模型在临床实践中预测血肿扩张的鲁棒性 | 急性脑出血患者的入院头部CT扫描 | 数字病理 | 脑出血 | FGSM和PGD对抗攻击,Otsu多阈值分割 | 深度学习模型 | CT图像 | 训练/交叉验证队列890名患者,独立验证队列684名患者 |
285 | 2025-07-24 |
Tracking conditioned fear in pair-housed mice using deep learning and real-time cue delivery
2025-Jul, Neurobiology of stress
IF:4.3Q1
DOI:10.1016/j.ynstr.2025.100742
PMID:40678084
|
研究论文 | 本研究开发了一种基于深度学习的开源软件,用于在配对饲养的小鼠中实时追踪条件性恐惧行为 | 结合开源软件和深度学习姿态估计技术,在自然环境中研究小鼠的条件性恐惧行为 | 研究仅针对小鼠模型,结果向人类PTSD的转化需要进一步验证 | 开发新方法来研究创伤后应激障碍(PTSD)相关的恐惧行为 | 配对饲养的小鼠 | 数字病理学 | 创伤后应激障碍(PTSD) | 深度学习姿态估计 | 深度学习模型 | 视频 | 配对饲养的小鼠群体(具体数量未提及) |
286 | 2025-07-24 |
Revolutionizing agriculture: A comprehensive review on artificial intelligence applications in enhancing properties of agricultural produce
2025-Jul, Food chemistry: X
DOI:10.1016/j.fochx.2025.102748
PMID:40686912
|
review | 本文综述了人工智能在农业中的应用,包括作物病害检测、产量预测、土壤健康评估等方面 | 详细探讨了AI工具如ML算法、深度学习模型、IoT和DSS在农业中的创新应用 | 广泛采用面临高成本、隐私问题、基础设施不足和技术知识有限等障碍 | 探索人工智能在农业中的应用及其潜力 | 农作物、土壤、农业实践 | machine learning | NA | ML算法、深度学习模型、IoT、DSS | CNN、LSTM | image、text | NA |
287 | 2025-07-24 |
A proof-of-concept study of direct magnetic resonance imaging-based proton dose calculation for brain tumors via neural networks with Monte Carlo-comparable accuracy
2025-Jul, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100806
PMID:40687308
|
研究论文 | 本研究提出了一种基于深度学习的剂量引擎,可直接从磁共振图像计算质子剂量,以简化工作流程并保持蒙特卡罗级别的准确性 | 首次实现了直接从磁共振图像进行质子剂量计算,无需合成CT,简化了工作流程并保持了高精度 | 研究仅针对脑肿瘤患者,样本量较小(39例),且未在其他肿瘤类型中验证 | 开发一种直接从磁共振图像计算质子剂量的方法,以简化质子治疗的工作流程 | 脑肿瘤患者的磁共振和CT图像 | 医学影像分析 | 脑肿瘤 | 深度学习 | xLSTM | 医学影像(MRI和CT) | 39例脑肿瘤患者(29例训练,3例验证,7例测试) |
288 | 2025-07-24 |
Three-dimensional reconstruction of the knee joint based on automated 1.5T magnetic resonance image segmentation: A feasibility study
2025-Jul, Journal of experimental orthopaedics
IF:2.0Q2
DOI:10.1002/jeo2.70361
PMID:40689092
|
研究论文 | 本研究验证了基于1.5T MRI的自动和半自动分割方法在膝关节三维重建中的准确性 | 使用基于transformer的深度学习模型(UNet-R)进行自动分割,并与半自动和手动分割方法进行比较 | 样本量较小(仅11个膝关节),且仅使用1.5T MRI系统 | 验证MRI在膝关节三维重建中的准确性 | 膝关节的远端股骨和近端胫骨 | 数字病理 | 骨科疾病 | 1.5T MRI扫描 | UNet-R(基于transformer的深度学习模型) | MRI图像 | 11个新鲜冷冻尸体膝关节 |
289 | 2025-07-24 |
A multi-task deep neural network reveals inflowing river impacts for predictive lake management
2025-Jul, Environmental science and ecotechnology
IF:14.0Q1
DOI:10.1016/j.ese.2025.100592
PMID:40689412
|
研究论文 | 本文提出了一种多任务深度神经网络(MTDNN),用于预测流入河流对湖泊水质的影响,以提高湖泊管理的效率和准确性 | 开发了一种能够同时预测多个水质指标的多任务深度神经网络,相比传统机械模型和单任务深度学习模型,预测精度提高了56.3% | 模型的应用可能依赖于特定湖泊的数据,其通用性需要进一步验证 | 开发一种集成预测工具,以有效管理湖泊水质和防止生态退化 | 滇池及其流入河流的水质指标(高锰酸盐指数、总磷、总氮和藻类密度) | 机器学习 | NA | 多任务深度神经网络(MTDNN) | 深度神经网络 | 水质数据 | 滇池及其流入河流的数据 |
290 | 2025-07-24 |
Analysis of Tumor Microenvironmental Features Between Primary and Synchronous Liver Metastases From Patients With Colorectal Cancers Using a Deep Learning Algorithm
2025-Jul, JCO clinical cancer informatics
IF:3.3Q2
DOI:10.1200/CCI-25-00004
PMID:40694782
|
研究论文 | 使用深度学习算法分析结直肠癌患者原发性和同步性肝转移瘤的肿瘤微环境特征 | 首次使用QuantCRC算法量化15种不同的形态学肿瘤特征,比较原发性和同步性肝转移瘤的微环境差异 | 样本量较小(57例患者),且仅来自单一医疗机构 | 探究结直肠癌原发瘤与同步性肝转移瘤在肿瘤微环境特征上的差异 | 结直肠癌患者及其同步性肝转移瘤 | 数字病理学 | 结直肠癌 | 深度学习算法(QuantCRC) | NA | 图像 | 57例结直肠癌患者及其同步性肝转移瘤 |
291 | 2025-07-24 |
VascX Models: Deep Ensembles for Retinal Vascular Analysis From Color Fundus Images
2025-Jul-01, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.14.7.19
PMID:40699175
|
研究论文 | 介绍并验证了用于彩色眼底图像血管、动静脉分割、视盘分割和中央凹定位的深度学习模型集成VascX | 提出了一个新的、更鲁棒的预处理算法和强大的数据增强方法,训练了UNet模型集成,性能优于现有公开模型 | 未明确提及具体限制,可能包括模型在极端图像条件下的表现或泛化能力 | 改进视网膜血管分析,支持更稳健的视网膜血管特征分析 | 彩色眼底图像(CFIs)中的血管、动静脉、视盘和中央凹 | 计算机视觉 | 眼科疾病 | 深度学习 | UNet集成模型 | 图像 | 超过15个已发布的带注释数据集,主要来自荷兰研究(如鹿特丹研究) |
292 | 2025-07-24 |
Immune-related genes can accurately predict survival in bladder cancer: a retrospective study via two independent immunotherapy cohorts
2025-Jun-30, Translational andrology and urology
IF:1.9Q3
DOI:10.21037/tau-2025-28
PMID:40687668
|
研究论文 | 本研究通过两个独立的免疫治疗队列,利用深度学习算法构建了一个基于免疫相关基因的风险评分模型,用于预测膀胱癌患者的生存期 | 首次利用深度学习算法构建基于免疫相关基因的风险评分模型,用于预测膀胱癌免疫治疗的预后 | 研究仍处于早期阶段,需要更多独立队列验证模型的普适性 | 识别免疫相关基因作为膀胱癌免疫治疗的潜在生物标志物 | 膀胱癌患者 | 数字病理学 | 膀胱癌 | 深度学习 | 深度学习算法 | 基因表达数据 | 两个独立免疫治疗队列(IMvigor210CoreBiologies包和GEO数据库) |
293 | 2025-07-24 |
The diagnostic model from semi-supervised cross modality transformation improved the distinguished ability of X-rays for pulmonary tuberculosis
2025-Jun-27, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.107004
PMID:40695011
|
研究论文 | 该研究通过构建半监督跨模态转换的AI模型,提高常规X光对肺结核的诊断准确性,使其接近CT扫描的性能 | 采用半监督跨模态转换计算模型,结合X光和CT图像独立训练深度学习模型,显著提升了X光诊断肺结核的精度和特异性 | 模型的灵敏度略低于原始X光模型,可能影响某些临床场景的应用 | 提高在资源匮乏地区肺结核的早期诊断准确性 | 肺结核患者的X光和CT图像 | 数字病理 | 肺结核 | 半监督跨模态转换计算模型,迁移学习 | 深度学习模型 | 图像 | 来自医院和两个开源数据集(CHNCXR和MC)的患者数据 |
294 | 2025-07-24 |
Multi-parameter MRI deep learning model for lymphovascular invasion assessment in invasive breast ductal carcinoma: A multicenter, retrospective study
2025-Jun-25, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.107002
PMID:40695008
|
研究论文 | 本研究探讨了基于多参数MRI的深度学习模型在预测浸润性乳腺导管癌淋巴血管侵犯状态中的价值 | 结合多参数MRI和深度学习技术,开发了一种新的术前LVI评估工具,提高了预测准确性 | 研究为回顾性设计,样本量有限(448例),且仅来自两个中心 | 评估多参数MRI深度学习模型在预测浸润性乳腺导管癌淋巴血管侵犯状态中的性能 | 浸润性乳腺导管癌患者 | 数字病理 | 乳腺癌 | 多参数MRI | MobileNetV2-3D | MRI图像 | 448例浸润性乳腺导管癌患者(来自两个医疗中心) |
295 | 2025-07-24 |
Upper Airway Volume Predicts Brain Structure and Cognition in Adolescents
2025-Jun-03, American journal of respiratory and critical care medicine
IF:19.3Q1
DOI:10.1164/rccm.202409-1748OC
PMID:40460372
|
研究论文 | 本研究通过深度学习模型分析儿童上呼吸道体积与认知能力及大脑结构的关系 | 首次在大型儿科队列中应用深度学习进行上呼吸道分割,揭示上呼吸道体积与认知能力及大脑结构的关联 | 研究仅基于观察性数据,无法确定因果关系 | 探究儿童上呼吸道体积与认知能力及大脑结构的关系 | 11,875名9-10岁儿童 | 数字病理学 | 睡眠呼吸障碍 | MRI, 深度学习 | 深度学习模型 | MRI图像 | 11,875名儿童,分析5,552,640个MRI切片 |
296 | 2025-07-24 |
Quantifying axonal features of human superficial white matter from three-dimensional multibeam serial electron microscopy data assisted by deep learning
2025-Jun, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2025.121212
PMID:40222502
|
研究论文 | 该研究利用深度学习辅助的三维多光束连续电子显微镜数据,量化了人类浅表白质的轴突特征 | 首次在纳米级分辨率下对人类浅表白质中的短程关联纤维进行了详细的形态学表征,并提供了大规模的三维电子显微镜数据集和精确的分割结果 | 研究仅针对人类浅表白质的一个特定区域,可能无法代表整个白质的轴突特征 | 量化人类浅表白质中短程关联纤维的轴突特征,以更好地理解皮质-皮质连接的微观基础 | 人类浅表白质中的短程关联纤维 | 数字病理学 | NA | 多光束扫描电子显微镜(EM) | CNN | 三维电子显微镜图像 | 一个200×200×112μm的人类浅表白质体积,包含128,285个有髓轴突 |
297 | 2025-07-24 |
Deep Learning-Based Models for Ventricular Segmentation in Hydrocephalus: A Systematic Review and Meta-Analysis
2025-06, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2025.124001
PMID:40306409
|
meta-analysis | 本文通过系统综述和荟萃分析评估了深度学习模型在脑积水患者心室分割中的性能 | 首次对深度学习模型在脑积水心室分割中的应用进行了系统评价和荟萃分析 | 纳入研究数量有限(24项),且不同影像模态间存在性能差异 | 评估深度学习模型在脑积水心室分割中的性能表现 | 脑积水患者的神经影像数据 | digital pathology | hydrocephalus | 深度学习 | DL-based models | MRI/CT/超声影像 | 24项研究共2911名患者 |
298 | 2025-07-24 |
ORAKLE: Optimal Risk prediction for mAke30 in patients with sepsis associated AKI using deep LEarning
2025-May-26, Critical care (London, England)
DOI:10.1186/s13054-025-05457-w
PMID:40420108
|
研究论文 | 介绍了一种名为ORAKLE的新型深度学习模型,用于预测脓毒症相关急性肾损伤(AKI)患者在30天内发生重大不良肾脏事件(MAKE30)的风险 | ORAKLE模型利用动态时间序列数据进行预测,克服了现有静态预测模型的不足,能够更准确地捕捉肾脏损伤、治疗效果和患者轨迹的动态变化 | 研究为回顾性分析,可能存在数据偏差;模型性能需在更多临床环境中进一步验证 | 开发能够准确预测AKI患者30天内重大不良肾脏事件风险的深度学习模型 | 脓毒症相关急性肾损伤(AKI)患者 | 医疗人工智能 | 急性肾损伤 | 深度学习时间序列分析 | Dynamic DeepHit框架 | 临床时间序列数据 | 开发队列(MIMIC-IV数据库)16,671例患者,外部验证队列(SiCdb数据库)2,665例患者和(eICU-CRD数据库)11,447例患者 |
299 | 2025-07-24 |
Pancreas segmentation using AI developed on the largest CT dataset with multi-institutional validation and implications for early cancer detection
2025-May-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-01802-9
PMID:40379726
|
研究论文 | 本研究开发了一种基于深度学习的卷积神经网络(CNN)用于胰腺的自动分割,并在大型CT数据集上进行了多机构验证,以提高早期胰腺癌检测的准确性 | 使用迄今为止最大的单机构CT数据集(n=3031)开发了3D nnU-Net模型,并在多机构AbdomenCT-1K数据集(n=585)上进行了外部验证,展示了模型在不同成像条件下的鲁棒性 | 虽然模型在多个数据集上表现良好,但未提及在更广泛或更具挑战性的临床环境中的表现 | 提高胰腺自动分割的准确性,以促进早期胰腺癌检测和胰腺疾病的生物标志物发现 | 胰腺 | 数字病理 | 胰腺癌 | 深度学习 | 3D nnU-Net | CT图像 | 3031个单机构CT扫描和585个多机构AbdomenCT-1K数据集扫描 |
300 | 2025-07-24 |
Tracking Conditioned Fear in Pair-Housed Mice Using Deep Learning and Real-Time Cue Delivery
2025-May-15, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.10.653260
PMID:40463247
|
研究论文 | 本研究开发了一种基于深度学习的开源软件,用于在配对饲养的小鼠家庭笼中实时追踪条件恐惧行为 | 结合开源软件和深度学习姿态估计技术,在生态学相关环境中研究小鼠的条件恐惧行为 | 研究仅针对小鼠模型,结果向人类PTSD的转化需要进一步验证 | 开发新方法来研究创伤后应激障碍(PTSD)相关的条件恐惧行为 | 配对饲养的小鼠 | 数字病理学 | 创伤后应激障碍(PTSD) | 深度学习姿态估计 | 深度学习模型 | 视频 | 配对饲养的小鼠群体(具体数量未明确说明) |