本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
281 | 2025-06-14 |
Prediction of CRISPR-Cas9 on-target activity based on a hybrid neural network
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.05.001
PMID:40502933
|
研究论文 | 提出了一种基于混合神经网络CRISPR_HNN的CRISPR-Cas9靶向活性预测方法 | 整合了MSC、MHSA和BiGRU模块,有效捕捉局部动态特征和全局长距离依赖关系,并采用One-hot Encoding和Label Encoding策略 | 未提及具体的数据集局限性或模型泛化能力测试 | 提高sgRNA活性的预测准确性,以增强CRISPR-Cas9基因编辑技术的安全性和有效性 | CRISPR-Cas9系统中的sgRNA活性 | 机器学习 | NA | CRISPR-Cas9基因编辑技术 | 混合深度神经网络(整合MSC、MHSA和BiGRU) | 基因序列数据 | 未明确提及具体样本量,仅说明在公共数据集上测试 |
282 | 2025-06-14 |
nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230115
PMID:39166971
|
research paper | 评估基于nnU-Net的分割模型在多机构MRI扫描上自动描绘儿童髓母细胞瘤肿瘤子区域的效果 | 使用nnU-Net模型进行儿童髓母细胞瘤肿瘤子区域的自动分割,并比较迁移学习和直接深度学习模型的性能 | 样本量相对较小(78例),且数据时间跨度较大(2000年至2019年) | 开发并评估自动分割儿童髓母细胞瘤肿瘤子区域的模型,以改进放射治疗计划 | 儿童髓母细胞瘤患者的多参数MRI扫描 | digital pathology | medulloblastoma | MRI(钆增强T1加权、T2加权和液体衰减反转恢复) | nnU-Net | image | 78例儿童髓母细胞瘤患者(52男,26女,年龄2-18岁) |
283 | 2025-06-14 |
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review
2024-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.230138
PMID:38568094
|
系统性综述 | 本研究通过系统性综述探讨了深度学习在前列腺MRI分割中的准确性和鲁棒性,并与专业放射科医生进行了比较 | 首次系统性评估深度学习在前列腺MRI分割中的表现,并比较不同MRI厂商、前列腺区域和测试方法下的性能 | 仅纳入截至2022年7月31日前的英文文献,可能遗漏最新研究成果 | 评估深度学习在前列腺MRI分割中的准确性和鲁棒性 | 前列腺MRI图像 | 数字病理学 | 前列腺癌 | MRI | 深度学习算法 | 医学影像 | 48项研究(来自691篇初步筛选文献) |
284 | 2025-06-14 |
Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting
2024-Jul, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.5033
PMID:38864690
|
研究论文 | 通过计算机模拟折叠和熔解验证了从头设计的水溶性和跨膜β桶蛋白 | 揭示了AlphaFold2和ESMFold在不同任务中的优势,并引入了一种基于预测增量扰动的'计算机模拟熔解'新方法 | 缺乏高质量预测模型与实验成功机会之间关系的正式证据 | 验证和比较深度学习结构预测算法在蛋白质设计中的应用 | 从头设计的水溶性和跨膜β桶蛋白 | 计算生物学 | NA | 深度学习结构预测算法(AlphaFold2, ESMFold) | AlphaFold2, ESMFold | 蛋白质序列和结构数据 | NA |
285 | 2025-06-14 |
Semi-supervised Learning for Generalizable Intracranial Hemorrhage Detection and Segmentation
2024-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.230077
PMID:38446043
|
research paper | 开发并评估了一种半监督学习模型,用于颅内出血检测和分割,并在分布外的头部CT评估集上进行了测试 | 采用半监督学习方法,通过教师-学生模型框架利用未标记数据提升模型性能,增强了模型在分布外数据上的泛化能力 | 研究依赖于特定机构的数据集,可能限制了模型的广泛适用性 | 提高颅内出血检测和分割的准确性和泛化能力 | 头部CT扫描图像 | digital pathology | traumatic brain injury | semi-supervised learning | deep learning model (teacher-student framework) | image | 457 labeled head CT scans and 25,000 unlabeled examinations |
286 | 2025-06-14 |
Deep Learning-based Approach for Brainstem and Ventricular MR Planimetry: Application in Patients with Progressive Supranuclear Palsy
2024-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.230151
PMID:38506619
|
research paper | 开发了一种基于深度学习的快速全自动方法,用于MRI平面测量分割和测量进行性核上性麻痹(PSP)患者中最受影响的脑干和脑室结构 | 提出了一种全自动的深度学习方法,用于分割和测量脑干及脑室结构,并成功应用于PSP与帕金森病(PD)的鉴别诊断 | 研究为回顾性研究,样本量有限,且仅针对PSP和PD患者 | 开发一种自动化方法,支持PSP及其他与脑干和脑室改变相关疾病的诊断 | 进行性核上性麻痹(PSP)患者和帕金森病(PD)患者 | digital pathology | geriatric disease | MRI | CNN | image | 健康对照组84例,PSP患者71例,PD患者129例,测试数据集305例 |
287 | 2025-06-14 |
A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography
2024-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.230033
PMID:38597785
|
research paper | 评估半自主人工智能模型在筛查乳腺X光片中识别非乳腺癌可疑病例并减少假阳性检查的能力 | 开发了一种半自主深度学习系统,显著减少乳腺癌筛查中的假阳性率和不必要的医疗程序 | 研究基于回顾性数据,需要在更多前瞻性研究中验证其效果 | 降低乳腺癌筛查中的假阳性率和相关医疗负担 | 乳腺X光筛查图像 | digital pathology | breast cancer | deep learning | AI | image | 123,248张训练用乳腺X光片(含6,161例癌症)和14,831例筛查检查(含1,026例癌症)的回顾性研究 |
288 | 2024-08-07 |
Faster, More Practical, but Still Accurate: Deep Learning for Diagnosis of Progressive Supranuclear Palsy
2024-May, Radiology. Artificial intelligence
DOI:10.1148/ryai.240181
PMID:38691010
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
289 | 2025-06-14 |
SCIseg: Automatic Segmentation of T2-weighted Intramedullary Lesions in Spinal Cord Injury
2024-Apr-21, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.01.03.24300794
PMID:38699309
|
研究论文 | 开发了一种名为SCIseg的深度学习工具,用于自动分割脊髓损伤中的T2加权髓内病变 | SCIseg模型通过三阶段训练过程,包括主动学习,能够自动分割脊髓和髓内病变,且在不同病因、扫描仪制造商和图像分辨率下表现良好 | 研究为回顾性研究,可能存在选择偏差 | 开发自动分割脊髓损伤中T2加权髓内病变的深度学习工具 | 脊髓损伤患者的T2加权MRI图像 | 数字病理学 | 脊髓损伤 | 深度学习 | SCIseg(基于深度学习的模型) | MRI图像 | 191名脊髓损伤患者(平均年龄48.1岁±17.9,142名男性) |
290 | 2025-06-14 |
Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI
2024-03, Radiology. Artificial intelligence
DOI:10.1148/ryai.230152
PMID:38353633
|
research paper | 开发了一个弱监督深度学习模型WISDOM,用于直肠癌患者术前MRI数据的淋巴结诊断 | 提出了一个弱监督模型开发框架WISDOM,结合术后病理信息进行淋巴结诊断,显著提升了放射科医生的诊断性能 | 研究为回顾性设计,可能存在选择偏差 | 开发并验证一个基于MRI的淋巴结诊断模型,辅助直肠癌患者的临床诊断 | 直肠癌患者的MRI数据和术后病理信息 | digital pathology | rectal cancer | MRI (T2-weighted and diffusion-weighted imaging) | weakly supervised deep learning model | image | 1014名患者(训练队列589人,内部测试队列146人,外部测试队列279人) |
291 | 2025-06-14 |
Prior Clinico-Radiological Features Informed Multi-Modal MR Images Convolution Neural Network: A novel deep learning framework for prediction of lymphovascular invasion in breast cancer
2024-02, Cancer medicine
IF:2.9Q2
DOI:10.1002/cam4.6932
PMID:38230837
|
research paper | 本研究开发了一种名为PCMM-Net的深度学习框架,用于提高乳腺癌淋巴血管侵犯(LVI)预测的准确性 | PCMM-Net整合了多参数MRI和先前的临床知识,以提高LVI评估的精确度 | 当前基于术前MRI的放射组学方法在评估早期乳腺癌患者的LVI时缺乏精确性 | 开发一个深度学习框架以提高乳腺癌LVI预测的准确性 | 341名乳腺癌患者 | digital pathology | breast cancer | MRI | CNN | image | 341名患者 |
292 | 2025-06-14 |
Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images
2024, Npj imaging
DOI:10.1038/s44303-024-00021-7
PMID:38948152
|
research paper | 提出了一种基于深度学习的虚拟H&E染色方法,从无标记的自发荧光寿命图像中生成临床级虚拟H&E染色图像 | 结合先进的深度学习模型和当代图像质量度量,利用荧光寿命信息(而不仅仅是强度)实现更准确的虚拟染色重建 | 未提及具体样本量的限制或模型在更广泛组织类型上的泛化能力 | 解决FLIM图像快速精确解释的难题,实现无标记组织样本的即时准确细胞级分析 | 肿瘤微环境中常见的七种不同细胞类型 | digital pathology | multiple cancer types | fluorescence lifetime imaging microscopy (FLIM) | DL (unspecified architecture) | autofluorescence lifetime images | NA (未明确提及具体样本数量) |
293 | 2025-06-14 |
Expert-centered Evaluation of Deep Learning Algorithms for Brain Tumor Segmentation
2024-01, Radiology. Artificial intelligence
DOI:10.1148/ryai.220231
PMID:38197800
|
研究论文 | 本文通过文献调查和专家评估,探讨了深度学习算法在脑肿瘤分割中的评估实践及专家对分割质量的感知 | 揭示了专家对脑肿瘤分割质量感知的低一致性,并指出现有定量指标与临床感知之间的低相关性 | 专家评估样本量较小(60例),且专家间评分一致性较低(Krippendorff α=0.34) | 评估深度学习算法在脑肿瘤分割中的性能及专家对分割质量的感知差异 | 脑肿瘤分割算法及医学专家对分割质量的评价 | 数字病理 | 脑肿瘤 | 深度学习算法 | NA | 医学影像 | 60例脑肿瘤分割案例(由医学专家评估),180篇文献调查 |
294 | 2025-06-14 |
A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology
2024-01, Radiology. Artificial intelligence
DOI:10.1148/ryai.230132
PMID:38166332
|
research paper | 开发了一个端到端的深度学习管道,用于自动分割来自多中心Fontan循环患者的心脏MRI数据 | 提出了一个包含三个深度学习模型的管道,用于识别短轴电影堆栈、图像裁剪和分割,实现了对单心室生理患者心脏MRI数据的快速标准化分割 | 在475例未见过的检查中,有26%需要轻微调整,5%需要重大调整,0.4%的裁剪模型失败 | 开发一个自动化深度学习管道,用于评估单心室生理患者的心脏MRI心室容积 | 来自13个机构的250例心脏MRI检查 | digital pathology | cardiovascular disease | cardiac MRI | U-Net 3+ | image | 250例心脏MRI检查(训练、验证和测试),并在475例未见过的检查中进一步评估 |
295 | 2025-06-14 |
Revisiting the Trustworthiness of Saliency Methods in Radiology AI
2024-01, Radiology. Artificial intelligence
DOI:10.1148/ryai.220221
PMID:38166328
|
research paper | 评估放射学AI中显著性方法的可信度,特别是其对输入微小扰动的敏感性和鲁棒性 | 提出预测-显著性相关性(PSC)系数作为评估显著性方法敏感性和鲁棒性的新指标 | 研究仅基于胸部X光片和脑部MR图像数据集,可能无法推广到其他医学影像领域 | 验证医学AI解释方法的可信度 | 胸部X光片和脑部MR图像 | digital pathology | lung cancer | deep learning | CNN | image | 191229张胸部X光片和7022张脑部MR图像 |
296 | 2025-06-14 |
Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts
2024-01, Radiology. Artificial intelligence
DOI:10.1148/ryai.230095
PMID:38166331
|
research paper | 开发了一种基于深度学习的全自动设备无关和序列无关的卷积神经网络(CNN),用于可靠且高通量地标记异质、非结构化的MRI数据 | 使用大规模多中心研究队列训练的模型,能够可靠地区分九种MRI序列类型,且在存在或不存在肿瘤的情况下均保持高准确率 | NA | 开发一个可靠且高通量的MRI序列自动标记系统 | 多中心脑MRI数据 | computer vision | glioblastoma | MRI | CNN, ResNet-18 | image | 2179名胶质母细胞瘤患者,8544次检查,63327个序列,来自249家医院和29种扫描仪类型 |
297 | 2025-06-14 |
Examination-Level Supervision for Deep Learning-based Intracranial Hemorrhage Detection on Head CT Scans
2024-01, Radiology. Artificial intelligence
DOI:10.1148/ryai.230159
PMID:38294324
|
research paper | 比较弱监督(仅检查级别标签)和强监督(图像级别标签)在训练深度学习模型检测头CT扫描中的颅内出血(ICH)方面的效果 | 研究表明弱监督模型在特定条件下性能优于强监督模型,且能显著减少放射科医生的工作量 | 研究仅基于回顾性数据集,未在临床前瞻性环境中验证 | 评估不同监督级别对深度学习模型检测颅内出血性能的影响 | 头CT扫描中的颅内出血检测 | digital pathology | intracranial hemorrhage | CT扫描 | attention-based CNN | image | 21,736次检查(内部数据集)和511次检查(外部数据集) |
298 | 2025-06-14 |
Active learning to classify macromolecular structures in situ for less supervision in cryo-electron tomography
2021-Aug-25, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btab123
PMID:33620460
|
研究论文 | 提出了一种混合主动学习框架HAL,用于在冷冻电子断层扫描中减少对大量标注数据的需求 | 结合不确定性采样和判别器来平衡标注数据的代表性和多样性,显著减少标注工作量 | 在真实数据集上的性能相比模拟数据有所下降,且未考虑更复杂的生物结构场景 | 解决冷冻电子断层扫描中因标注数据不足导致的生物大分子结构分类难题 | 冷冻电子断层扫描获得的生物大分子亚断层图 | 计算机视觉 | NA | 冷冻电子断层扫描(cryo-ET) | 深度学习模型(未指定具体类型) | 3D生物医学图像 | 模拟和真实亚断层图数据集(具体数量未说明) |
299 | 2025-06-14 |
Gene expression inference with deep learning
2016-06-15, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btw074
PMID:26873929
|
研究论文 | 提出一种名为D-GEX的深度学习方法,用于从标志基因的表达推断目标基因的表达 | 使用深度学习模型替代线性回归,显著提高了基因表达推断的准确性 | 在RNA-Seq数据集上的性能提升相对较小,且仍有部分目标基因的推断误差较大 | 开发更准确的基因表达推断方法 | 基因表达数据 | 机器学习 | NA | 微阵列和RNA-Seq | 深度学习 | 基因表达数据 | 111K微阵列表达谱和2921个RNA-Seq表达谱 |
300 | 2025-06-13 |
Domain-separated capsule network for damage detection in aluminum plates under varying vibration conditions
2025-Oct, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107688
PMID:40381421
|
研究论文 | 本文提出了一种域分离胶囊网络(DS-CapsNet),用于在不同振动条件下检测铝板的损伤 | DS-CapsNet结合了胶囊网络和注意力机制,通过动态对抗因子优化特征对齐,并利用多头自注意力机制提升分类性能 | NA | 提高在不同振动条件下铝板损伤检测的准确性 | 2024铝合金板 | 结构健康监测 | NA | 超声导波 | DS-CapsNet(域分离胶囊网络) | 信号数据 | NA |