本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2981 | 2025-04-12 |
Leveraging Physics-Based Synthetic MR Images and Deep Transfer Learning for Artifact Reduction in Echo-Planar Imaging
2025-Apr-02, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8566
PMID:39947682
|
研究论文 | 本研究利用基于物理的方法合成真实的MR伪影,并训练一个深度学习生成对抗网络(GAN)以减少EPI中的伪影 | 采用基于物理的方法合成MR伪影,并提出一种'堆叠迁移学习'策略来训练GAN,以有效减少EPI中的伪影 | 研究仅针对EPI序列的伪影,未涵盖其他MRI序列的伪影问题 | 减少EPI(一种关键的神经影像序列)中的伪影,提高图像质量 | EPI序列中的伪影 | 数字病理 | 神经胶质瘤 | GAN, 迁移学习 | Pix2PixGAN with Attention-R2UNet generator | MR图像 | 1,392名患者的4,573个解剖MR序列,49名复发性胶质母细胞瘤患者的ADC图 |
2982 | 2025-04-12 |
Deep Learning-Based Reconstruction for Accelerated Cervical Spine MRI: Utility in the Evaluation of Myelopathy and Degenerative Diseases
2025-Apr-02, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8567
PMID:40147833
|
research paper | 本研究比较了传统颈椎MRI与基于深度学习的加速颈椎MRI在图像质量和诊断性能上的差异 | 使用商业化的供应商无关的基于深度学习的重建算法,显著缩短了MRI扫描时间,同时保持或提高了图像质量和诊断性能 | 样本量较小(50例患者),且仅针对颈椎退行性疾病和脊髓病变进行评估 | 评估基于深度学习的加速颈椎MRI在图像质量和诊断性能上的表现 | 50例患有退行性颈椎疾病或脊髓病变的患者 | digital pathology | degenerative spine diseases and myelopathy | MRI | DL-based reconstruction | image | 50例患者 |
2983 | 2025-04-12 |
Rapid Identification of Medicinal Polygonatum Species and Predictive of Polysaccharides Using ATR-FTIR Spectroscopy Combined With Multivariate Analysis
2025-Apr, Phytochemical analysis : PCA
IF:3.0Q2
DOI:10.1002/pca.3459
PMID:39422183
|
research paper | 本研究基于ATR-FTIR光谱结合多元分析方法,开发了药用黄精种类的定性模型和多糖预测模型 | 结合ATR-FTIR光谱与多元分析方法,实现了药用黄精种类的快速鉴别和多糖含量的高效预测,特别是ResNet模型无需复杂预处理即可实现100%正确分类 | 未来研究可进一步探索便携式红外光谱仪的应用,并将红外光谱技术扩展到药用黄精其他化学成分的预测 | 开发药用黄精种类的定性模型和多糖预测模型,以提高其质量控制和功效评估 | 334个药用黄精样本和110个黄精多糖样本 | 光谱分析 | NA | ATR-FTIR光谱、多元分析、PLSR、Kernel-PLSR、ResNet | OPLS-DA、PLSR、Kernel-PLSR、ResNet | 光谱数据 | 334个药用黄精样本和110个黄精多糖样本 |
2984 | 2025-04-12 |
Comparison of Intratumoral and Peritumoral Deep Learning, Radiomics, and Fusion Models for Predicting KRAS Gene Mutations in Rectal Cancer Based on Endorectal Ultrasound Imaging
2025-Apr, Annals of surgical oncology
IF:3.4Q1
DOI:10.1245/s10434-024-16697-5
PMID:39690384
|
research paper | 比较基于直肠内超声图像的肿瘤内和肿瘤周围深度学习、放射组学及融合模型在预测直肠癌KRAS基因突变中的表现 | 首次比较了肿瘤内和肿瘤周围区域的深度学习、放射组学及融合模型在预测KRAS突变中的效果,并展示了融合模型的优越性 | 研究样本来自单一医疗中心,可能影响模型的泛化能力 | 预测直肠癌中的KRAS基因突变 | 直肠癌患者 | digital pathology | rectal cancer | endorectal ultrasound imaging | CNN, radiomics, fusion models | image | 304名直肠癌患者(训练组213名,测试组91名) |
2985 | 2025-04-12 |
Identification of lesion bioactivity in hepatic cystic echinococcosis using a transformer-based fusion model
2025-Apr, The Journal of infection
IF:14.3Q1
DOI:10.1016/j.jinf.2025.106455
PMID:40049526
|
研究论文 | 本研究评估了基于Transformer的融合模型在评估肝囊型包虫病(HCE)病变活性方面的性能 | 使用Transformer网络架构构建的多模态融合模型,整合了临床特征、放射组学特征以及2D和3D深度学习特征,显著提高了HCE病变活性的分类性能 | 研究仅基于三家医院的数据,可能缺乏更广泛的地理和人群代表性 | 开发有效的方法来区分肝囊型包虫病(HCE)病变的生物活性,以制定更有效的治疗方案 | 700名HCE患者的CT图像和临床变量 | 数字病理学 | 肝囊型包虫病 | CT成像、放射组学分析、深度学习 | Transformer-based融合模型、2D深度学习模型、3D深度学习模型 | CT图像、临床变量 | 700名HCE患者 |
2986 | 2025-04-12 |
Multiparametric MR Urography: State of the Art
2025-04, Radiographics : a review publication of the Radiological Society of North America, Inc
IF:5.2Q1
DOI:10.1148/rg.240151
PMID:40080439
|
review | 本文综述了多参数MR尿路造影(MRU)的最新技术进展及其在临床中的应用 | MRU在对比分辨率、组织表征和上尿路可视化方面与CT尿路造影(CTU)相当,并在特定患者群体中成为首选检查方法 | MRU在某些情况下可能不如CTU普及,且需要技术优化和对各种病理条件的深入了解 | 探讨MRU在尿路成像中的技术进展和临床应用 | 肾脏、肾盂系统、输尿管和膀胱 | 医学影像 | 泌尿系统疾病 | 静态流体T2加权成像、钆增强尿路上皮和排泄期成像、动态对比增强MRI、扩散加权成像 | NA | 医学影像数据 | NA |
2987 | 2025-04-12 |
An artificial intelligence tool that may assist with interpretation of rapid plasma reagin test for syphilis: Development and on-site evaluation
2025-Apr, The Journal of infection
IF:14.3Q1
DOI:10.1016/j.jinf.2025.106454
PMID:40043816
|
research paper | 开发并验证了一种基于人工智能的快速血浆反应素(RPR)测试解释工具,用于梅毒诊断和治疗效果评估 | 利用深度学习算法开发了一种用户友好的RPR-AI解释工具,可在智能手机上进行现场解释,提高了RPR测试的标准化和数据可追溯性 | 模型的准确性仍有提升空间,特别是在反应性圆圈的识别上 | 开发并验证一种用于梅毒诊断和治疗效果评估的RPR-AI解释工具 | 600张RPR卡片图像,来自276个阴性和223个阳性RPR样本 | digital pathology | syphilis | deep learning | CNN | image | 600张RPR卡片图像(276阴性,223阳性),现场研究涉及669个样本 |
2988 | 2025-04-12 |
Soil and crop interaction analysis for yield prediction with satellite imagery and deep learning techniques for the coastal regions
2025-Apr, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.125095
PMID:40138935
|
研究论文 | 利用卫星图像和深度学习技术分析土壤与作物相互作用以预测沿海地区作物产量 | 结合Sentinel-2卫星图像和NDVI指数,采用CNN方法进行降雨径流预测,提高了作物产量预测的准确率至98.7%,显著优于传统方法的85%-90% | 研究主要针对沿海地区,可能不适用于其他地理环境 | 提高作物产量预测的准确性,优化农业决策 | 沿海地区的土壤和作物 | 农业科技 | NA | Sentinel-2卫星图像、NDVI指数 | CNN | 卫星图像 | NA |
2989 | 2025-04-12 |
Effective evaluation of greenhouse gases (GHGs) emissions from anoxic/oxic (A/O) process of regenerated papermaking wastewater treatment through hybrid deep learning techniques: Leveraging the critical role of water quality indicators
2025-Apr, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.125094
PMID:40174391
|
research paper | 本研究通过混合深度学习技术评估再生造纸废水处理中A/O工艺的温室气体排放,并探讨水质指标的关键作用 | 开发了一种新型混合深度学习模型TCNA,结合了Temporal Convolutional Network (TCN)和Attention Mechanism (AM),用于预测温室气体排放 | 研究基于实验室规模的A/O工艺,可能无法完全反映实际工业废水处理厂的复杂情况 | 准确评估工业废水处理过程中温室气体排放,以支持碳排放计算和管理 | 再生造纸废水处理过程中的温室气体排放 | machine learning | NA | 深度学习 | TCNA (TCN + AM), CNN, RNN, LSTM, TCN | 水质指标数据(COD, SS, NH-N, NO-N, pH/DO/温度等) | 295组多因素数据集,来自约110天的实验数据 |
2990 | 2025-04-12 |
Feasibility study of real-time virtual sensing for water quality parameters in river systems using synthetic data and deep learning models
2025-Apr, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.125191
PMID:40179555
|
研究论文 | 本研究探讨了结合深度学习与虚拟传感技术实时监测小型河流系统中关键水质参数的可行性 | 首次将深度学习模型与虚拟传感技术结合,用于小型河流系统的水质参数实时监测,并比较了实际数据与合成数据的预测效果 | 研究仅基于9个传感器测量指标生成合成数据,可能无法涵盖所有水质变化情况 | 评估深度学习虚拟传感技术在小型河流系统水质实时监测中的应用潜力 | 小型河流系统中的水质参数(总有机碳TOC、总氮TN、总磷TP) | 机器学习 | NA | 深度学习虚拟传感技术 | DL模型 | 传感器数据、合成数据 | 基于9个传感器测量指标生成的数据集 |
2991 | 2025-04-12 |
Deep neural network modeling for brain tumor classification using magnetic resonance spectroscopic imaging
2025-Apr, PLOS digital health
DOI:10.1371/journal.pdig.0000784
PMID:40202966
|
研究论文 | 本研究探讨了深度神经网络在脑肿瘤分类中的应用,特别是针对磁共振波谱成像(MRSI)数据的处理 | 直接对原始MRSI时域数据应用深度神经网络,避免了传统方法中复杂的手动处理步骤 | 需要更大数据集进行验证以建立标准化指南并增强临床实用性 | 提高脑肿瘤早期和准确检测的效率,以支持有效治疗 | 脑肿瘤患者的合成和真实MRSI数据 | 数字病理学 | 脑肿瘤 | 磁共振波谱成像(MRSI) | 深度神经网络 | 光谱时间序列数据 | 包括合成和真实MRSI数据的脑肿瘤患者数据集 |
2992 | 2025-04-12 |
Universal photonic artificial intelligence acceleration
2025-Apr, Nature
IF:50.5Q1
DOI:10.1038/s41586-025-08854-x
PMID:40205212
|
研究论文 | 介绍了一种光子AI处理器,能够执行包括ResNet和BERT在内的高级AI模型,以及DeepMind最初展示的Atari深度强化学习算法 | 该光子AI处理器在许多工作负载上实现了接近电子精度的性能,标志着光子计算进入与现有电子AI加速器竞争的新阶段 | 尚未有光子芯片达到实际AI应用所需的精度,且演示仅限于简化的基准任务 | 探索光子技术在AI和深度学习中的加速张量操作,以提高能源效率和性能 | 光子AI处理器 | 机器学习 | NA | 光子计算 | ResNet, BERT, 深度强化学习算法 | NA | NA |
2993 | 2025-02-19 |
Deep learning: Cracking the metabolic code
2025-Mar-01, Hepatology (Baltimore, Md.)
DOI:10.1097/HEP.0000000000001220
PMID:39960202
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
2994 | 2025-04-12 |
Optimizing Input Selection for Cardiac Model Training and Inference: An Efficient 3D Convolutional Neural Networks-Based Approach to Automate Coronary Angiogram Video Selection
2025-Mar, Mayo Clinic proceedings. Digital health
DOI:10.1016/j.mcpdig.2025.100195
PMID:40206993
|
研究论文 | 开发了一种基于3D卷积神经网络的自动化方法,用于选择适合训练深度学习模型的冠状动脉造影视频 | 使用3D-CNN模型(特别是X3D-L)在冠状动脉造影视频选择中实现了高效自动化,并在计算效率和复杂性之间取得了平衡 | 在独立数据集上验证时,所有指标略有下降 | 提高医学图像分析的准确性和效率 | 冠状动脉造影视频 | 数字病理 | 心血管疾病 | 深度学习 | 3D-CNN(ResNet和X3D) | 视频 | 232例冠状动脉造影研究用于训练,3208例手术用于独立验证 |
2995 | 2025-04-12 |
Gait Speed and Task Specificity in Predicting Lower-Limb Kinematics: A Deep Learning Approach Using Inertial Sensors
2025-Mar, Mayo Clinic proceedings. Digital health
DOI:10.1016/j.mcpdig.2024.11.004
PMID:40207006
|
研究论文 | 开发一个深度学习框架,利用惯性测量单元(IMU)数据预测多任务步态下的下肢关节运动学,并评估动态时间规整(DTW)对减少预测误差的影响 | 提出了一种结合LSTM自编码器和监督回归的深度学习模型,用于多任务步态下的关节运动学预测,并验证了DTW在降低预测误差方面的有效性 | 样本量较小(仅18名参与者),且仅验证了矢状面的关节角度预测 | 开发远程连续生物力学评估的实用解决方案 | 下肢关节(髋、膝、踝)运动学预测 | 机器学习 | NA | 惯性测量单元(IMU),光学运动捕捉系统 | LSTM自编码器监督回归模型(含LSTM和CNN层) | IMU传感器数据(加速度计和陀螺仪的3轴数据及其幅值) | 18名参与者 |
2996 | 2025-04-12 |
Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound
2025-Mar, Mayo Clinic proceedings. Digital health
DOI:10.1016/j.mcpdig.2025.100194
PMID:40207004
|
研究论文 | 开发了一个端到端的深度学习框架,用于从超声心动图视频中估计左心室射血分数(LVEF)、患者年龄和性别分类,包括使用手持心脏超声(HCU)收集的视频 | 利用全面的超声心动图数据为手持心脏超声的人工智能模型提供支持,展示了手持设备可以获得聚焦诊断图像 | 研究主要基于Mayo Clinic的数据,可能在其他医疗系统中的泛化性有待验证 | 开发深度学习模型以提升手持心脏超声的诊断能力 | 超声心动图视频,包括手持心脏超声(HCU)和经胸超声心动图(TTE)数据 | 数字病理 | 心血管疾病 | 深度学习 | 深度学习模型 | 视频 | 训练集6432项研究,内部验证集1369项研究,前瞻性数据集625名患者 |
2997 | 2025-04-12 |
Spatial single-cell proteomics landscape decodes the tumor microenvironmental ecosystem of intrahepatic cholangiocarcinoma
2025-Feb-25, Hepatology (Baltimore, Md.)
DOI:10.1097/HEP.0000000000001283
PMID:39999448
|
研究论文 | 本研究利用人工智能辅助的空间多组学模式,生成了肝内胆管癌(iCCA)的综合空间图谱,并识别了与预后和免疫治疗相关的空间特征 | 首次揭示了iCCA的空间肿瘤微环境(TME)特征,包括细胞沉积模式、细胞群落和细胞间通讯,并开发了一个深度学习系统来预测患者预后 | 样本量在某些组学数据中相对较小(如空间转录组学n=4),可能影响结果的广泛适用性 | 解析iCCA的空间TME特征,为精准患者分类和个性化治疗策略开发提供基础 | 肝内胆管癌(iCCA)患者的肿瘤微环境 | 数字病理学 | 肝内胆管癌 | 成像质谱流式细胞术、空间蛋白质组学、空间转录组学、多重免疫荧光、单细胞RNA测序(scRNA-seq)、批量RNA测序、批量蛋白质组学 | 深度学习 | 多组学数据(蛋白质组、转录组、影像数据) | 总计超过106万个细胞,包括155例内部成像质谱流式细胞术样本、155例内部空间蛋白质组学样本、4例内部空间转录组学样本、20例内部多重免疫荧光样本、9例内部和34例公共scRNA-seq样本、244例公共批量RNA-seq样本、110例内部和214例公共批量蛋白质组学样本 |
2998 | 2025-04-12 |
Detection of periodontal bone loss and periodontitis from 2D dental radiographs via machine learning and deep learning: systematic review employing APPRAISE-AI and meta-analysis
2025-Feb-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae070
PMID:39656957
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析探讨了人工智能在牙科全景和根尖周X光片上评估牙槽骨流失和牙周炎的应用 | 使用APPRAISE-AI工具对AI研究进行定量评估,并进行了荟萃分析,揭示了深度学习在评估牙周骨水平方面的潜力 | 纳入研究的质量参差不齐,缺乏非常高质量的研究,AI研究的透明度和报告标准有待提高 | 评估人工智能在牙科X光片上诊断牙槽骨流失和牙周炎的应用效果 | 牙科全景和根尖周X光片 | 数字病理 | 牙周炎 | 深度学习 | 深度学习模型 | 2D图像 | 30篇论文纳入综述,其中10篇适合荟萃分析 |
2999 | 2025-04-12 |
Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects
2025-Feb, Best practice & research. Clinical gastroenterology
DOI:10.1016/j.bpg.2025.101975
PMID:40210329
|
综述 | 本文综述了人工智能(AI)与内镜超声(EUS)结合在胆胰病变早期检测中的当前进展和未来前景 | AI驱动的模型(如机器学习和深度学习)显著提高了诊断准确性,特别是在区分胰腺导管腺癌与良性病变及胰腺囊性肿瘤的特征分析方面 | 数据标准化、模型可解释性以及数据隐私的伦理问题仍是挑战 | 探讨AI与EUS结合在胆胰病变早期检测和管理中的潜力 | 胆胰病变,包括胰腺导管腺癌(PDAC)、良性病变及胰腺囊性肿瘤 | 数字病理 | 胰腺癌 | 机器学习和深度学习 | CNN | 图像 | NA |
3000 | 2025-04-12 |
Critical factors influencing live birth rates in fresh embryo transfer for IVF: insights from cluster ensemble algorithms
2025-01-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88210-1
PMID:39881210
|
研究论文 | 本研究通过引入一种基于非负矩阵分解的集成算法(NMFE),分析了影响新鲜胚胎移植成功的关键临床因素 | 提出了一种新颖的NMFE算法,结合了NMF、AMU-NMF和GDLC算法,提高了分析IVF-ET数据集的准确性和可靠性 | 研究未提及算法的计算复杂度或在实际临床环境中的适用性 | 识别影响体外受精(IVF)新鲜胚胎移植成功的关键临床因素 | 2238个IVF周期和85个独立临床特征 | 机器学习 | 不孕症 | 非负矩阵分解(NMF)、加速乘法更新(AMU-NMF)、广义深度学习聚类(GDLC) | NMFE | 临床数据 | 2238个IVF周期 |