本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3101 | 2026-01-08 |
Enhanced Neurovascular Imaging Using Ultra-High-Resolution CT and Deep Learning-Based Image Reconstruction
2026-Jan-05, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8964
PMID:41436283
|
研究论文 | 本研究评估了基于深度学习的图像重建在超高清CT神经血管成像中的诊断优势 | 首次将深度学习重建算法应用于超高清CT神经血管成像,并与标准混合迭代重建进行对比 | 单中心回顾性研究,样本量有限,仅使用特定供应商的深度学习算法 | 评估深度学习重建在神经血管成像中的诊断效益 | 100名因急性神经症状接受颅脑CT和CTA检查的患者 | 医学影像分析 | 脑血管疾病 | CTA, 超高清CT, 深度学习图像重建 | 深度学习算法 | CT图像 | 100名患者 | Matlab | 供应商特定的深度学习算法 | SNR, CNR, 斜率评估, 图像质量评分 | NA |
| 3102 | 2026-01-05 |
YOLO-based deep learning framework for real-time multi-class plant health monitoring in precision agriculture
2026-Jan-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-29132-w
PMID:41484288
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 3103 | 2026-01-08 |
Automated evaluation of pulmonary lesion changes on chest radiograph during follow-up using semantic segmentation
2026-01-02, Diagnostic and interventional radiology (Ankara, Turkey)
DOI:10.4274/dir.2025.253567
PMID:41321291
|
研究论文 | 本研究开发并验证了一种基于深度学习的模型,利用病灶特异性分割技术,在配对胸部X光片中自动评估实变和胸腔积液的改变状态 | 首次提出一种病灶特异性深度学习模型,用于自动评估胸部X光片中实变和胸腔积液在随访期间的改变状态,实现了对病灶变化的量化分析 | 模型在ICU环境中对胸腔积液的评估准确性显著低于放射科医生,且研究数据仅来自单一机构,可能限制了模型的泛化能力 | 开发一种自动化工具,用于评估胸部X光片中肺部病灶在随访期间的变化状态 | 胸部X光片中的实变和胸腔积液病灶 | 数字病理学 | 肺部疾病 | 语义分割 | 深度学习模型 | 图像 | 5,178张胸部X光片用于模型训练,另从急诊科和重症监护室获取配对X光片用于阈值确定和时间验证 | 未明确指定 | 未明确指定 | AUC, 准确率 | NA |
| 3104 | 2026-01-08 |
Beyond peak accuracy: a stability-centric framework for reliable multimodal student engagement assessment
2026-Jan-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-31215-7
PMID:41484417
|
研究论文 | 本研究提出了一种多模态学生参与度评估框架,通过类别感知损失函数、时间数据增强和异质集成等策略,解决了类别不平衡、模型不稳定性和可解释性有限的问题 | 引入了一个以稳定性为中心的框架,结合类别感知损失函数、时间数据增强、异质集成和基于SHAP的可解释性分析,以提升评估的可靠性和鲁棒性 | 未明确提及具体的数据集限制或外部验证的不足 | 开发一个可靠且稳定的多模态学生参与度评估系统,用于技术增强学习 | 学生参与度 | 机器学习 | NA | 多模态数据融合 | CNN, 集成学习 | 多模态数据(可能包括视频、音频等) | NA | NA | ResNet, Inception, MCNN, TimeCNN | 准确率, 宏平均F1分数 | NA |
| 3105 | 2026-01-08 |
Area detection improves the person-based performance of a deep learning system for classifying the presence of carotid artery calcifications on panoramic radiographs
2026-Jan, Oral radiology
IF:1.6Q3
DOI:10.1007/s11282-025-00843-0
PMID:40694246
|
研究论文 | 本研究开发并比较了两种结合区域检测功能的深度学习系统,用于在全景X光片上分类颈动脉钙化,并评估其基于个体的诊断性能 | 引入了区域检测功能(先验或同时)到深度学习系统中,以提升基于个体的颈动脉钙化分类性能,与直接使用整张全景图像的方法相比显示出显著改进 | 研究样本量相对有限(580张全景X光片),且未详细讨论模型在不同人群或设备间的泛化能力 | 开发并评估深度学习系统在全景X光片上诊断颈动脉钙化的性能,特别关注区域检测对基于个体分类的影响 | 来自290名患者(有颈动脉钙化)和290名对照者(无颈动脉钙化)的580张全景X光片 | 计算机视觉 | 心血管疾病 | 全景X光成像 | CNN | 图像 | 580张全景X光片(来自580名个体) | NA | GoogLeNet, YOLOv7 | AUC | NA |
| 3106 | 2026-01-08 |
Deep learning model for automated segmentation of sphenoid sinus and middle skull base structures in CBCT volumes using nnU-Net v2
2026-Jan, Oral radiology
IF:1.6Q3
DOI:10.1007/s11282-025-00848-9
PMID:40748555
|
研究论文 | 本研究开发了一种基于nnU-Net v2的深度学习模型,用于在锥形束计算机断层扫描(CBCT)体积中自动分割蝶窦和中颅底解剖结构,并评估了模型的性能 | 首次应用nnU-Net v2深度学习模型于CBCT体积中蝶窦及中颅底结构的自动分割,实现了高精度的分割性能 | 模型在中颅底其他孔洞结构的分割上表现有限,需要进一步优化 | 开发并评估一个用于CBCT影像中蝶窦及中颅底解剖结构自动分割的深度学习模型 | 蝶窦及中颅底解剖结构,包括蝶窦、圆孔和翼管 | 计算机视觉 | NA | 锥形束计算机断层扫描(CBCT) | 深度学习 | 图像 | 99个CBCT扫描 | nnU-Net v2 | nnU-Net | 准确率, 精确率, 召回率, Dice系数, 95% Hausdorff距离, 交并比, AUC | NA |
| 3107 | 2026-01-08 |
Evaluation of deep learning-based segmentation models for carotid artery calcification detection in panoramic radiographs
2026-Jan, Oral radiology
IF:1.6Q3
DOI:10.1007/s11282-025-00858-7
PMID:40931257
|
研究论文 | 本研究评估了基于深度学习的YOLO分割模型在曲面断层片中检测颈动脉钙化的有效性,并比较了不同YOLO模型的性能 | 首次在颈动脉钙化检测中系统比较了YOLOv5x-seg、YOLOv8x-seg和YOLOv11x-seg三种分割模型的性能,并探讨了患者性别与钙化存在的关联 | 研究数据集规模有限(仅652张标注图像),需要更大、更多样化的数据集来验证模型的泛化能力和有效性 | 评估人工智能辅助分割方法在曲面断层片中检测颈动脉钙化的效果,并进行流行病学关联分析 | 曲面断层片中的颈动脉钙化区域 | 计算机视觉 | 心血管疾病 | 深度学习图像分割 | YOLO | 图像 | 30,883张曲面断层片扫描,其中652张有颈动脉钙化特征(共1,086个标注) | NA | YOLOv5x-seg, YOLOv8x-seg, YOLOv11x-seg | 精确度, 准确度, F1分数, 灵敏度 | NA |
| 3108 | 2026-01-08 |
Robust Brain Extraction Tool for Nonenhanced CT and CT Angiography: CTA-BET
2026-Jan, Radiology. Artificial intelligence
DOI:10.1148/ryai.240847
PMID:41147859
|
研究论文 | 开发并评估了一种基于深度学习的脑提取模型CTA-BET,用于CT血管造影和非增强CT图像的精确脑部分割 | 开发了首个专门针对CTA和NCCT图像的深度学习脑提取模型,并在多机构数据上验证了其优于现有非商业工具的鲁棒性和准确性 | 研究为回顾性研究,训练数据量相对有限(100例患者),且未在更广泛的外部数据集上进行前瞻性验证 | 开发一种适用于CT血管造影和非增强CT图像的自动化、高精度脑提取工具 | CT血管造影图像和非增强CT图像中的脑组织 | 数字病理学 | NA | CT血管造影,非增强CT | CNN | 医学图像(3D CT) | 训练集:100例患者(多机构CTA数据);验证集:50例患者(外部CTA数据)和132例患者(公开CQ500 NCCT数据) | NA | NA | Dice分数,Hausdorff距离,分数归一化直方图 | NA |
| 3109 | 2026-01-08 |
Rethinking Privacy in Medical Imaging AI: From Metadata and Pixel-Level Identification Risks to Federated Learning and Synthetic Data Challenges
2026-Jan, Radiology. Artificial intelligence
DOI:10.1148/ryai.250273
PMID:41295085
|
综述 | 本文探讨了医学影像AI中的隐私风险,包括元数据和像素级可识别信息,并回顾了联邦学习与合成数据生成等隐私保护方法的局限性 | 系统性地指出像素级图像信息(如强度值)同样可被深度学习模型利用以揭示敏感患者数据,并强调了现有隐私保护方法(如联邦学习和合成数据)在模型反转和推理攻击下的脆弱性 | 文章为综述性质,未提出具体的解决方案或进行实证研究,主要侧重于风险分析和现有方法的局限性讨论 | 分析医学影像人工智能应用中的隐私风险,并评估现有隐私保护技术的有效性及挑战 | 医学影像数据(包括元数据和像素信息)及其在AI应用中的隐私泄露风险 | 医学影像人工智能 | NA | 深度学习 | NA | 医学影像 | NA | NA | NA | NA | NA |
| 3110 | 2026-01-08 |
Spatial distribution prediction and scale effect analysis of urban daytime noise based on remote sensing images: a case study of Chengdu
2026-Jan-01, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.128379
PMID:41422570
|
研究论文 | 本研究基于高分辨率遥感影像和深度学习模型,预测成都市白天噪声的空间分布并分析尺度效应 | 首次将高分辨率遥感影像与ResNet和ViT架构的端到端深度学习模型结合,用于预测城市白天噪声分布,并通过多尺度融合实验和傅里叶谱分析揭示了2米分辨率的最优性能及其物理机制 | 研究仅针对成都市,未考虑其他城市或不同气候条件;多尺度融合实验未带来显著性能提升,可能受限于数据冗余或冲突 | 探索基于遥感影像的城市道路交通噪声高效监测方法,分析不同空间分辨率对预测性能的影响 | 成都市整个城市区域的白天噪声分布 | 计算机视觉 | NA | 遥感影像分析 | CNN, Transformer | 图像 | NA | NA | ResNet, ViT | 预测精度 | NA |
| 3111 | 2026-01-08 |
The Evolving Landscape of Urology in the Era of Artificial Intelligence: An Update of Clinical Applications and Emerging Innovations
2026-Jan, Mymensingh medical journal : MMJ
PMID:41474926
|
综述 | 本文更新了人工智能在泌尿外科领域的临床应用和新兴创新,涵盖诊断成像、良性疾病、泌尿肿瘤、手术和患者监测等方面 | 强调了人工智能在泌尿外科中的最新进展,包括通过尿液液体活检进行早期疾病检测、基于AI的计算活检直接从H&E染色切片预测基因组标记,以及未来如通用人工智能和联邦学习等创新方向 | 数据多样性不足和临床整合存在限制,同时面临算法偏见和数据隐私等伦理挑战 | 综述人工智能在泌尿外科领域的应用现状、临床价值及未来发展趋势 | 泌尿外科疾病,包括良性泌尿系统疾病(如输尿管结石、良性前列腺增生)和泌尿系统肿瘤(如前列腺癌、肾细胞癌、膀胱癌) | 数字病理学 | 前列腺癌 | 机器学习, 深度学习 | NA | 图像, 液体活检, H&E染色切片 | NA | NA | NA | 准确率, AUC, 敏感性 | NA |
| 3112 | 2026-01-08 |
Validation of a Deep Learning U-Net Algorithm for Multistructure Segmentation of Infrarenal Abdominal Aortic Aneurysms including Lumen, Thrombus, and Calcifications
2026, EJVES vascular forum
IF:1.4Q3
DOI:10.1016/j.ejvsvf.2025.11.001
PMID:41488250
|
研究论文 | 本研究验证了一种基于深度学习的U-Net算法,用于自动分割腹主动脉瘤的多个结构,包括管腔、血栓和钙化 | 开发了一种全自动深度学习算法,能够同时分割腹主动脉瘤的管腔、血栓和钙化,为数字孪生生成提供优化方案 | 外部验证仅基于48个CT血管造影扫描,样本量相对较小 | 验证一种新的全自动深度学习主动脉分割算法,用于优化数字孪生生成 | 腹主动脉和髂动脉的管腔、侧支动脉、腔内血栓和壁钙化 | 数字病理 | 心血管疾病 | CT血管造影 | CNN | 图像 | 训练集1280个CT血管造影扫描(1000个预训练,280个微调),外部验证集48个扫描 | NA | U-Net | Dice相似系数,平均表面距离 | NA |
| 3113 | 2026-01-08 |
Deep Learning Model for Predicting Operative Mortality After Total Gastrectomy: Analysis of the Japanese National Clinical Database (NCD)
2026-Jan, Annals of gastroenterological surgery
IF:2.9Q2
DOI:10.1002/ags3.70067
PMID:41488848
|
研究论文 | 本研究利用日本国家临床数据库(NCD)的大数据,开发了一个深度学习模型,用于预测全胃切除术后的手术死亡率 | 首次利用NCD大数据构建深度学习模型来预测全胃切除术后的手术死亡率,并采用了四层、5217个变量的复杂模型结构 | 模型准确性有待提高,需要引入与术后并发症相关或传统方法无法分析的新变量 | 开发一个深度学习预测模型,用于术前基于患者预期手术风险进行分层,以降低全胃切除术后的死亡率 | 2018年1月至2019年12月期间在日本国家临床数据库中注册的、年龄18岁及以上、因胃癌接受全胃切除术的患者 | 机器学习 | 胃癌 | NA | 深度学习模型 | 结构化临床数据(包括年龄、性别、既往病史、术前血液检查结果、肿瘤特征等) | 14,980例(其中11,980例用于训练,3,000例用于验证) | TensorFlow, Keras | 四层神经网络 | C统计量(AUC) | NA |
| 3114 | 2026-01-08 |
Advancing biological taxonomy in the AI era: deep learning applications, challenges, and future directions
2026-Jan, Science China. Life sciences
DOI:10.1007/s11427-025-3074-8
PMID:41136689
|
综述 | 本文回顾了生物分类学在人工智能时代的发展,重点探讨了深度学习在图像、声音、基因序列分类及物种性状解析中的应用、挑战与未来方向 | 系统梳理了生物分类学从形态学、分子生物学到人工智能驱动的三个阶段,首次提出将基因组视为“语言”的基础模型可能为物种界定提供更根本的数据驱动基础,并强调因果感知模型的整合可能带来变革 | 面临数据质量、算法鲁棒性、参考库完整性、模型透明度及共享标准等多重挑战,且AI与分类学的深度融合可能导致核心分类概念的演变,需谨慎引导 | 探讨人工智能(特别是深度学习)在生物分类学中的应用潜力、当前挑战及未来发展方向 | 生物分类学的方法论与技术体系 | 自然语言处理, 计算机视觉, 机器学习 | NA | 深度学习, 基础模型 | 基础模型 | 图像, 音频, 基因序列, 文本 | NA | NA | NA | NA | NA |
| 3115 | 2026-01-08 |
Bioprocess modeling and optimization in composting of hazelnut processing wastes and municipal solid waste: Type 1 fuzzy regression, neural network based approaches and genetic algorithm
2026-Jan-01, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.128254
PMID:41386011
|
研究论文 | 本研究开发了一种混合模型,用于预测和优化榛子加工废弃物与城市固体废物堆肥过程中的堆肥成熟度 | 提出了一种结合模糊回归、神经网络和深度学习策略的混合模型,能够同时建模线性和非线性关系,处理过程不确定性,并具备现有文献中建模工具所不具备的优越特性 | 未明确说明实验样本的具体数量,且模型性能仅在特定废弃物组合下验证 | 通过机器学习模型优化有机废弃物堆肥过程,提高堆肥效率和质量 | 榛子壳、榛子壳与城市固体废物的混合堆肥过程 | 机器学习 | NA | 堆肥过程监测(温度、pH、C/N、水分含量、NH/NO、发芽指数) | 混合模型(模糊回归、神经网络、深度学习) | 过程参数数据(温度、pH、C/N等) | 未明确说明具体样本数量,但提及使用有限实验数据 | NA | 神经网络(具体架构未指定) | 比例误差(低于5%)、期望水平(95%以上) | NA |
| 3116 | 2026-01-08 |
Detection of Mycobacterium tuberculosis in Ziehl-Neelsen Stained Sputum Smear Specimens Using Deep Learning Techniques
2026-Jan, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica
IF:2.2Q3
DOI:10.1111/apm.70138
PMID:41494997
|
研究论文 | 本研究探讨了深度学习技术在Ziehl-Neelsen染色痰涂片标本中检测结核分枝杆菌的有效性 | 应用多种迁移学习模型(如DenseNet201、ResNet101V2、Xception等)进行结核分枝杆菌的自动检测,其中InceptionV3和Xception模型在所有评估指标上达到99.00%的高性能 | 未明确说明样本来源的多样性、模型在临床环境中的泛化能力测试以及计算资源的具体需求 | 评估深度学习模型在基于显微镜检查的结核病诊断中的性能,并探索其在提高敏感性和可用性方面的改进 | Ziehl-Neelsen染色的痰涂片标本中的抗酸杆菌(AFB) | 计算机视觉 | 结核病 | 抗酸染色(Ziehl-Neelsen染色) | CNN | 图像 | NA | NA | DenseNet201, ResNet101V2, Xception, InceptionResNetV2, InceptionV3 | 准确率, 召回率, 精确率, F1分数 | NA |
| 3117 | 2026-01-08 |
Attention-driven framework to segment renal ablation zone in posttreatment CT images: a step toward ablation margin evaluation
2026-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.13.1.014001
PMID:41497560
|
研究论文 | 本文提出了一种基于注意力机制的深度学习框架,用于在治疗后CT图像中分割肾脏消融区,以辅助消融边缘评估 | 首次使用并行CT图像进行基于深度学习的肾脏消融区分割,并引入了注意力机制增强U-Net架构以提升分割精度 | 数据集规模较小(仅76名患者),且分割精度(如DSC为0.70)和召回率(0.73)仍有提升空间,可能影响在多样化临床场景中的泛化能力 | 开发并评估一种准确的深度学习工作流程,用于从肾脏CT图像中分割肾脏消融区,以支持治疗评估 | 肾脏消融区(RAZ)在治疗后CT图像中的分割 | 数字病理学 | 肾细胞癌 | CT成像 | CNN | 3D CT图像 | 76名患者的注释肾脏消融区CT图像 | NA | 注意力增强的U-Net | 准确率, 精确率, 召回率, DSC, Jaccard系数, 特异性, 豪斯多夫距离, 平均绝对边界距离 | NA |
| 3118 | 2026-01-08 |
ClinReadNet: A clinical reading-inspired network for low-dose abdominal CT image quality assessment
2025-Dec-31, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.108535
PMID:41494492
|
研究论文 | 本文提出了一种名为ClinReadNet的深度学习框架,用于低剂量腹部CT图像的无参考质量评估,其设计灵感来源于放射科医生的临床阅片逻辑 | 提出了一种模拟医生阅片习惯的深度学习框架,包括Sobel序数质量网络模块、(移位)窗口多尺度温度多头自注意力模块和分层排序概率得分损失函数,实现了从整体到局部的注意力转移,并关注了评分标签间的距离信息 | NA | 开发一个低剂量、无参考的图像质量评估模型,以模拟医生的阅片习惯来评估CT图像质量 | 低剂量腹部CT图像 | 计算机视觉 | NA | CT成像 | 深度学习 | 图像 | 基于LDCTIQAG2023数据集 | NA | ClinReadNet | Pearson线性相关系数, Spearman秩相关系数, Kendall秩相关系数 | NA |
| 3119 | 2026-01-08 |
A novel deep learning system for STEMI prognostic prediction from multi-sequence cardiac magnetic resonance
2025-Dec-30, Science bulletin
IF:18.8Q1
DOI:10.1016/j.scib.2025.11.027
PMID:41314962
|
研究论文 | 开发了一个名为DeepSTEMI的端到端深度学习系统,用于从多序列心脏磁共振图像结合临床参数预测STEMI患者的2年主要不良心血管事件 | 首次提出一个整合多序列心脏磁共振图像与临床参数的端到端深度学习系统,通过U-Net模块自动分割心脏区域和基于Transformer的模块预测心血管事件,实现了临床与影像的协同分析 | 研究基于特定注册数据集(EARLY-MYO-CMR),外部验证仅来自三个独立心脏中心,可能限制模型的泛化能力 | 提高ST段抬高型心肌梗死(STEMI)患者预后的早期风险分层准确性,以支持精准治疗 | STEMI患者 | 数字病理学 | 心血管疾病 | 心脏磁共振成像 | 深度学习 | 图像 | 开发集610名患者(20,618张图像),外部验证集334名患者(9,944张图像) | NA | U-Net, Transformer | AUC, 准确率, 净重分类指数 | NA |
| 3120 | 2026-01-08 |
Augmented intelligence for multimodal virtual biopsy in breast cancer using generative artificial intelligence
2025-Dec-26, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2025.104971
PMID:41456845
|
研究论文 | 本研究提出了一种基于生成式人工智能的多模态、多视图深度学习框架,用于乳腺癌虚拟活检,通过整合全视野数字乳腺X线摄影和对比增强能谱乳腺X线摄影图像,实现乳腺病变的良恶性非侵入性分类 | 引入基于CycleGAN的生成模型合成缺失的CESM图像,以解决多模态数据不完整问题,并采用两阶段晚期融合策略加权整合视图和模态特异性恶性概率 | 随着合成CESM图像比例增加,分类性能有所下降,且研究依赖于特定数据集,可能限制泛化能力 | 开发一种非侵入性乳腺癌虚拟活检系统,通过多模态图像融合提升乳腺病变分类准确性 | 乳腺病变(恶性或良性)的全视野数字乳腺X线摄影和对比增强能谱乳腺X线摄影图像 | 计算机视觉 | 乳腺癌 | 全视野数字乳腺X线摄影,对比增强能谱乳腺X线摄影 | CNN, GAN | 图像 | 未明确指定样本数量,但使用了扩展的CESM@UCBM数据集 | PyTorch(基于CycleGAN的常见实现框架) | ResNet18, ResNet50, VGG16, CycleGAN | AUC, G-mean, MCC, 峰值信噪比, 结构相似性指数 | 未明确指定,但通常涉及GPU计算资源 |