深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24356 篇文献,本页显示第 301 - 320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
301 2025-05-08
Deep learning-based auditory attention decoding in listeners with hearing impairment
2024-05-22, Journal of neural engineering IF:3.7Q2
研究论文 本研究开发了一种基于深度学习的快速听觉注意力解码方法,用于听力受损者的脑电图分析 使用深度卷积神经网络模型处理听力受损者的脑电图数据,实现了三种分类任务,并探讨了数据分割策略对结果的影响 研究仅针对听力受损人群,且样本量有限(31名参与者) 探索听力技术如何影响听力受损人群的听觉处理过程 听力受损者的脑电图数据 机器学习 听力障碍 EEG DCNN 脑电图数据 31名听力受损参与者
302 2025-05-08
FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification
2024-05-15, Journal of neural engineering IF:3.7Q2
研究论文 提出了一种结合特征提取和时间-通道联合注意力的混合方法FetchEEG,用于基于EEG的情绪分类 结合传统特征提取和深度学习的优势,采用多头自注意力机制同时提取不同时间点和通道的表示 未明确提及具体局限性 提高基于EEG的情绪分类的准确性和泛化能力 EEG数据和情绪分类 神经工程 NA EEG分析 Transformer EEG信号 自建数据集和两个公共数据集
303 2025-05-08
EEGminer: discovering interpretable features of brain activity with learnable filters
2024-05-13, Journal of neural engineering IF:3.7Q2
研究论文 提出了一种名为EEGminer的系统,用于从多通道EEG记录中学习信息丰富的潜在表示 引入了可学习滤波器,通过广义高斯函数参数化,提供平滑导数以实现稳定的端到端模型训练,并允许学习可解释的特征 NA 设计一个系统,用于从持续EEG活动的多通道记录中学习信息丰富的潜在表示 脑电活动模式 机器学习 NA EEG信号处理 可学习滤波器和预定义特征提取模块 EEG信号 721名受试者的新EEG数据集,以及SEED数据集和同时任务EEG工作负荷数据集
304 2025-05-08
An explainable ensemble approach for advanced brain tumor classification applying Dual-GAN mechanism and feature extraction techniques over highly imbalanced data
2024, PloS one IF:2.9Q1
研究论文 提出一种基于可解释集成方法的脑肿瘤分类流程,结合Dual-GAN机制和特征提取技术处理高度不平衡数据 提出新颖的深度集成特征提取(DeepEFE)框架,结合Dual-GAN机制生成合成少数类样本,解决类别不平衡问题,并通过Grad-CAM增强分类过程的可解释性 未提及具体数据集规模或外部验证结果 提高脑肿瘤分类准确性并增强模型可解释性 脑肿瘤MRI图像 数字病理学 脑肿瘤 Dual-GAN机制,特征提取技术 GAN, 深度集成模型 MRI图像 NA
305 2025-05-08
Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis
2024, Transboundary and emerging diseases IF:3.5Q1
综述 本文对深度学习技术在利什曼病诊断、药物发现和疫苗开发中的应用进行了范围综述 首次对深度学习在利什曼病领域的应用进行全面综述,填补了该领域的空白 仅对现有文献进行综述,未进行新的实验或数据分析 评估深度学习技术在利什曼病相关医学研究中的应用现状和潜力 利什曼病相关的诊断、药物发现和疫苗开发研究 机器学习 利什曼病 深度学习 NA NA NA
306 2025-05-08
Automated Detection of Abnormal Optical Coherence Tomography B-scans Using a Deep Learning Artificial Intelligence Neural Network Platform
2024-Jan-01, International ophthalmology clinics
NA NA NA NA NA NA NA NA NA NA NA NA
307 2025-05-08
Genome-wide association analysis of left ventricular imaging-derived phenotypes identifies 72 risk loci and yields genetic insights into hypertrophic cardiomyopathy
2023-11-30, Nature communications IF:14.7Q1
研究论文 通过全基因组关联分析左心室成像衍生表型,识别了72个风险位点,并为肥厚型心肌病的遗传基础提供了新见解 开发了一种新的深度学习算法来准确计算左心室区域壁厚,并首次在全基因组范围内鉴定了72个与左心室区域壁厚相关的遗传位点 研究样本主要来自UK Biobank,可能限制了结果的普遍性 识别影响左心室区域壁厚的特定遗传因素,并探索其与肥厚型心肌病的因果关系 42,194名来自UK Biobank的个体 基因组学 心血管疾病 心脏磁共振成像(CMR), 深度学习, 全基因组关联研究(GWAS), 孟德尔随机化分析 深度学习算法 影像数据 42,194名个体
308 2025-05-08
TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records
2023-11-29, Nature communications IF:14.7Q1
研究论文 提出了一种基于transformer的编码器-解码器生成模型TransformEHR,用于增强电子健康记录(EHRs)中疾病结果的预测 采用新的预训练目标——预测患者未来就诊的所有疾病和结果,结合编码器-解码器框架,实现了在多个临床预测任务上的最新性能 NA 提升电子健康记录中疾病结果的预测性能 电子健康记录(EHRs) 自然语言处理 胰腺癌、创伤后应激障碍 transformer-based encoder-decoder generative model transformer 电子健康记录(EHRs) NA
309 2025-05-08
Label-free identification of protein aggregates using deep learning
2023-11-28, Nature communications IF:14.7Q1
research paper 提出了一种无需荧光标记的蛋白质聚集体识别方法LINA,利用深度学习从透射光图像中检测未标记的Httex1聚集体 首次实现了无需荧光标记的蛋白质聚集体动态识别,并能够测量其干质量和面积变化 目前仅针对Httex1蛋白聚集体进行了验证,尚未扩展到其他蛋白质聚集体 开发一种无需荧光标记的蛋白质聚集体识别方法,以更准确地研究蛋白质聚集动力学 Huntington病相关Httex1蛋白聚集体 digital pathology neurodegenerative diseases deep learning CNN image 未明确说明样本数量,研究对象为活细胞中的Httex1聚集体
310 2025-05-08
CROSS-DOMAIN DIFFUSION BASED SPEECH ENHANCEMENT FOR VERY NOISY SPEECH
2023-Jun, Proceedings of the ... IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP (Conference)
研究论文 本研究提出了一种基于跨域扩散的语音增强方法,用于极低信噪比条件下的非平稳噪声场景 将基于扩散的学习方法整合到增强模型中,提高了在极端噪声条件下的鲁棒性 仅在TIMIT数据集上进行了验证,未在其他数据集上测试 提高低信噪比非平稳噪声场景下的语音增强性能 语音信号 语音处理 NA 扩散模型 扩散模型 语音信号 TIMIT数据集
311 2025-05-08
Coding infant engagement in the Face-to-Face Still-Face paradigm using deep neural networks
2023-05, Infant behavior & development IF:1.9Q3
研究论文 本研究使用深度神经网络(DNNs)对婴儿在面对面静止面孔(FFSF)任务中的参与度进行编码 首次将深度神经网络应用于FFSF任务中婴儿参与度的自动编码,并验证其高准确度 研究继承了原始数据集的样本限制,样本量较小且主要为白人群体 测试深度神经网络在FFSF任务中编码婴儿参与度的准确性 68对母婴组合在三个时间点完成的FFSF任务数据 计算机视觉 NA 深度神经网络图像分类 DNN 视频图像 68对母婴组合在三个时间点的FFSF任务视频数据,包含40,000张图像
312 2025-05-08
Assessment of malalignment factors related to Invisalign treatment time aided by automated imaging processes
2023-Mar-01, The Angle orthodontist
research paper 本研究通过自动化成像过程评估与Invisalign治疗时间相关的错位因素 使用深度学习方法进行自动牙齿分割和标志点识别,并提出了一个结合6自由度(DOF)的复合评分作为治疗时间的预测指标 没有足够证据表明特定类型的牙齿移动会影响总矫治器治疗时间 识别影响Invisalign治疗持续时间的错位类型和严重程度的预测因素 116名接受Invisalign治疗的患者 digital pathology malocclusion deep learning NA digital scan 116名患者
313 2025-05-08
Cross-convolutional transformer for automated multi-organs segmentation in a variety of medical images
2023-01-23, Physics in medicine and biology IF:3.3Q1
research paper 提出了一种基于跨卷积变换器的深度学习方法,用于多种医学图像中的多器官自动分割 设计了新颖的跨卷积自注意力机制和多尺度特征边缘融合模块,以整合局部和全局上下文,增强图像语义特征理解 仅在三种不同模态的数据集上进行了验证,可能需要更多样化的数据集来证明其泛化能力 开发一种通用的、准确的医学图像多器官分割方法 医学图像中的多器官分割 digital pathology NA deep learning cross-convolutional transformer network (CFormer) image 三个不同数据集:Synapse数据集(腹部多器官CT图像)、ACDC数据集(心脏亚结构MRI)、ISIC 2017数据集(皮肤癌图像)
314 2025-05-07
Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, innovations, and future directions
2025-Dec, Renal failure IF:3.0Q1
研究论文 本文通过文献计量分析评估了1993年至2023年间890篇关于人工智能在肾移植中应用的出版物,以识别全球趋势、研究热点和未来机会 利用CiteSpace和VOSviewer工具进行文献计量分析,揭示了人工智能在肾移植中的快速扩展应用及新兴趋势,如个性化医疗和多模态数据融合 研究仅基于文献计量分析,可能未涵盖所有相关研究或实际临床应用中的具体挑战 评估人工智能在肾移植领域的研究趋势、创新点和未来方向 1993年至2023年间发表的890篇关于人工智能在肾移植中应用的出版物 数字病理学 终末期肾病 文献计量分析工具(CiteSpace和VOSviewer) 深度学习、机器学习算法 文献数据 890篇出版物
315 2025-05-07
Reinforcement learning using neural networks in estimating an optimal dynamic treatment regime in patients with sepsis
2025-Jun, Computer methods and programs in biomedicine IF:4.9Q1
research paper 本研究提出了一种结合强化学习和神经网络的算法(RL-NN),用于优化脓毒症患者的动态治疗方案 利用深度学习的灵活性减轻模型误设,并通过交叉验证和随机搜索进行超参数调优,提高了模型的鲁棒性和泛化能力 研究结果基于模拟数据和MIMIC-III数据库,可能无法完全反映真实世界的临床多样性 确定脓毒症患者多阶段液体复苏的最佳剂量 脓毒症患者 machine learning sepsis reinforcement learning, neural networks RL-NN electronic health records (EHR) 脓毒症患者队列(来自MIMIC-III数据库)
316 2025-05-07
Lag-Net: Lag correction for cone-beam CT via a convolutional neural network
2025-Jun, Computer methods and programs in biomedicine IF:4.9Q1
research paper 提出了一种名为Lag-Net的卷积神经网络方法,用于校正锥束CT中的滞后信号,以减少重建图像中的伪影 利用深度学习技术Lag-Net,以硬件校正结果作为训练目标,避免了传统线性时不变校正方法的局限性,并在低曝光条件下表现出色 硬件校正方法操作复杂,对CT仪器要求高,而深度学习方法的训练依赖于硬件校正的结果 提高锥束CT图像质量,减少由滞后信号引起的伪影 锥束CT中的滞后信号及其引起的图像伪影 digital pathology NA deep learning, convolutional neural network CNN image 模拟和真实数据集
317 2025-05-07
A deep learning framework leveraging spatiotemporal feature fusion for electrophysiological source imaging
2025-Jun, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出了一种基于深度学习的框架SSINet,用于通过脑电图(EEG)提供准确的脑活动时空估计 SSINet整合了残差网络(ResBlock)用于空间特征提取和双向LSTM用于捕捉时间动态,通过Transformer模块融合以捕捉全局依赖关系,并采用通道注意力机制优先处理活跃脑区 未提及具体局限性 解决非侵入性测量脑活动的电生理源成像(ESI)中的高度不适定逆问题 脑活动 机器学习 NA 脑电图(EEG) ResBlock, 双向LSTM, Transformer 脑电图数据 三个真实EEG数据集(视觉、听觉和体感刺激)
318 2025-05-07
Quantitative determination of acid value in palm oil during thermal oxidation using Raman spectroscopy combined with deep learning models
2025-May-15, Food chemistry IF:8.5Q1
研究论文 本研究结合拉曼光谱和深度学习模型,用于棕榈油热氧化过程中酸值的定量测定 首次将拉曼光谱与CNN、LSTM和Transformer等深度学习模型结合,显著提高了酸值预测的准确性和效率 需要进一步验证更多样化的指标数据集 提高食用油脂质量控制中酸值监测的准确性和效率 棕榈油在热氧化过程中的酸值 机器学习 NA 拉曼光谱 CNN, LSTM, Transformer 光谱数据 NA
319 2025-05-07
Universal semantic feature extraction from EEG signals: a task-independent framework
2025-May-06, Journal of neural engineering IF:3.7Q2
研究论文 开发了一个无监督框架,用于从EEG信号中提取任务无关的语义特征 提出了一个结合CNN、AutoEncoders和Transformers的新框架,用于提取EEG信号的低级时空模式和高级语义特征 NA 开发一个通用的、任务无关的EEG信号语义特征提取框架 EEG信号 机器学习 NA EEG信号处理 CNN, AutoEncoders, Transformers EEG信号 多个EEG数据集(BCICIV_2a、BCICIV_2b、Lee2019-SSVEP、Nakanishi2015等)
320 2025-05-07
Monitoring Amphetamine and Methamphetamine Mixtures Based on Deep Learning Involves Colorimetric Sensing
2025-May-06, Analytical chemistry IF:6.7Q1
研究论文 本文提出了一种基于深度学习的比色传感策略,用于精确识别和区分安非他命(AMP)和甲基安非他命(MA)混合物 通过调节探针结构影响反应产物的聚集行为,首次实现了AMP和MA混合物的掺杂比例判断,并结合自研的Drugs Analyst和深度学习算法 NA 开发一种高精度识别和区分结构相似的分析物的方法,应用于毒品缉查、食品添加剂检测和环境监测等领域 安非他命(AMP)和甲基安非他命(MA) 机器学习和光学传感 NA 比色传感和深度学习算法 深度学习 光学信号 NA
回到顶部