本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3221 | 2025-04-09 |
Synthetic Diffusion Tensor Imaging Maps Generated by 2D and 3D Probabilistic Diffusion Models: Evaluation and Applications
2025-Feb-25, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.21.639511
PMID:40060678
|
research paper | 评估和比较2D和3D概率扩散模型生成的合成扩散张量成像(DTI)图的质量及其在下游任务中的应用 | 首次评估和比较2D和3D DDPMs生成的合成DTI图的质量及其在下游任务中的表现,并展示3D合成优于2D切片生成 | 研究仅评估了MD图,未涵盖DTI所有参数;下游任务仅涉及性别分类和痴呆分类 | 解决DTI数据稀缺和隐私问题,并通过合成数据增强深度学习方法的训练数据 | 合成DTI MD图及其在性别分类和痴呆分类任务中的应用 | digital pathology | dementia | denoising diffusion probabilistic models (DDPMs) | 2D和3D CNNs | image | NA |
3222 | 2025-04-09 |
CellSAM: A Foundation Model for Cell Segmentation
2025-Feb-16, bioRxiv : the preprint server for biology
DOI:10.1101/2023.11.17.567630
PMID:38045277
|
research paper | 提出了一种名为CellSAM的通用细胞分割模型,能够跨多种细胞成像数据进行泛化 | 基于Segment Anything Model (SAM)开发了一种提示工程方法,用于掩模生成,并训练了一个名为CellFinder的对象检测器来自动检测细胞并提示SAM生成分割 | 未提及具体限制 | 开发一个能够跨多种细胞成像数据泛化的通用细胞分割模型 | 哺乳动物细胞、酵母和细菌的成像数据 | digital pathology | NA | deep learning, prompt engineering | SAM, object detector (CellFinder) | image | 多种成像模态下的哺乳动物细胞、酵母和细菌图像 |
3223 | 2025-04-09 |
Deep learning-based hyperspectral technique identifies metastatic lymph nodes in oral squamous cell carcinoma-A pilot study
2025-Feb, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.15067
PMID:39005220
|
研究论文 | 本研究基于高光谱成像和深度学习技术,开发了一种用于检测口腔鳞状细胞癌转移淋巴结中癌细胞的系统 | 采用改进的ResUNet算法分析癌细胞与淋巴细胞以及肿瘤组织与正常组织之间的光谱曲线差异 | 研究样本量较小,仅为45例口腔鳞状细胞癌患者的转移淋巴结 | 建立一种高精度、高效率的病理诊断方法,用于识别口腔鳞状细胞癌转移淋巴结中的肿瘤组织 | 45例口腔鳞状细胞癌(OSCC)患者的转移淋巴结连续切片 | 数字病理 | 口腔鳞状细胞癌 | 高光谱成像 | 改进的ResUNet | 高光谱图像 | 45例OSCC患者的转移淋巴结 |
3224 | 2025-04-09 |
Computational Stabilization of a Non-Heme Iron Enzyme Enables Efficient Evolution of New Function
2025-Jan-10, Angewandte Chemie (International ed. in English)
DOI:10.1002/anie.202414705
PMID:39394803
|
research paper | 本文展示了使用深度学习工具ProteinMPNN对Fe(II)/αKG超家族酶进行重新设计,以提高其稳定性、溶解性和表达,同时保留其天然活性和工业相关的非天然功能 | 利用深度学习工具ProteinMPNN进行酶设计,首次实现了对Fe(II)/αKG超家族酶的稳定化改造,并成功应用于定向进化,显著提高了非天然反应的催化效率 | 研究仅针对Fe(II)/αKG超家族酶,其通用性需要进一步验证 | 评估深度学习工具在酶工程工作流程中的有效性,开发新型生物催化剂 | Fe(II)/αKG超家族酶 | machine learning | NA | ProteinMPNN, directed evolution | deep learning | protein sequence and structure | 多个Fe(II)/αKG酶变体 |
3225 | 2025-04-09 |
Integrated brain tumor segmentation and MGMT promoter methylation status classification from multimodal MRI data using deep learning
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251332018
PMID:40190333
|
研究论文 | 本研究提出了一种基于深度学习的多模态MRI数据集成方法,用于脑肿瘤分割和MGMT启动子甲基化状态分类 | 提出了一种结合3D ResU-Net和3D ResNet10的两阶段深度学习流程,实现了非侵入性的MGMT启动子甲基化状态预测 | 仍处于研究阶段,需要未来研究和临床验证以探索其在真实临床环境中的适用性 | 开发非侵入性方法来支持神经肿瘤学家进行脑肿瘤诊断和治疗规划 | 胶质母细胞瘤(GBM)患者 | 数字病理 | 脑肿瘤 | 多模态MRI扫描 | 3D ResU-Net, 3D ResNet10 | MRI图像 | 使用BraTS2021脑肿瘤分割数据集和MGMT启动子状态分类数据集 |
3226 | 2025-04-09 |
Exploring the potential of deep learning models integrating transformer and LSTM in predicting blood glucose levels for T1D patients
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251328980
PMID:40190336
|
研究论文 | 本研究开发了一种结合Transformer和LSTM的混合深度学习模型,用于预测1型糖尿病患者的血糖水平 | 结合Transformer和LSTM网络,利用双向LSTM和Transformer编码器层在多阶段进行特征提取,提高了预测准确性和预测时间范围 | 模型在临床数据和模拟数据上的表现存在差异,可能需要进一步优化以适应更广泛的临床场景 | 提高血糖预测的准确性和预测时间范围,支持实时糖尿病管理 | 1型糖尿病患者的血糖水平 | 机器学习 | 糖尿病 | 深度学习 | Transformer和LSTM | 连续血糖监测数据 | 临床数据和模拟数据 |
3227 | 2025-04-09 |
Real-Time Snoring Detection Using Deep Learning: A Home-Based Smartphone Approach for Sleep Monitoring
2025, Nature and science of sleep
IF:3.0Q2
DOI:10.2147/NSS.S514631
PMID:40190583
|
研究论文 | 本研究提出了一种基于Vision Transformer深度学习模型和智能手机录音的实时打鼾检测方法 | 首次利用深度学习模型预测家庭录制的智能手机音频中的打鼾情况,并采用Vision Transformer架构 | 研究样本量相对较小,且依赖智能手机录音质量 | 开发一种实时打鼾检测方法,用于家庭睡眠监测 | 214名参与者的睡眠呼吸声音数据 | 机器学习 | 睡眠相关疾病 | 智能手机音频记录 | Vision Transformer | 音频 | 214名参与者(85,600个时段) |
3228 | 2025-04-09 |
Integration of multimodal imaging data with machine learning for improved diagnosis and prognosis in neuroimaging
2025, Frontiers in human neuroscience
IF:2.4Q2
DOI:10.3389/fnhum.2025.1552178
PMID:40191032
|
研究论文 | 提出了一种结合CNN、GRU和动态跨模态注意力模块的混合深度学习方法,用于整合多模态成像数据以提高神经影像诊断和预后的准确性 | 引入动态跨模态注意力模块,有效融合空间和时间脑数据,克服现有多模态融合技术的局限性 | 尚未应用于其他图像类型和临床数据,未来需要进一步验证 | 提高神经影像诊断和预后的准确性 | 阿尔茨海默病等脑部疾病 | 神经影像 | 阿尔茨海默病 | 结构MRI (sMRI) 和功能MRI (fMRI) | CNN, GRU, 动态跨模态注意力模块 | 多模态成像数据 | Human Connectome Project (HCP) 数据集,包含行为数据、fMRI和sMRI |
3229 | 2025-04-09 |
A semi-supervised weighted SPCA- and convolution KAN-based model for drug response prediction
2025, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2025.1532651
PMID:40191608
|
研究论文 | 提出了一种基于半监督加权SPCA和卷积KAN的药物反应预测模型NMDP,用于解决多组学基因数据中的特征提取、数据融合和小样本学习问题 | 引入可解释的半监督加权SPCA模块、基于样本相似性网络的双模态测试和方差信息的多组学数据融合框架,以及结合一维卷积和KAN的预测方法 | 未明确提及具体局限性,但提到需要处理小样本量和过拟合风险 | 精准肿瘤学中的药物反应预测 | 细胞系对特征药物的反应 | 机器学习 | 癌症 | 多组学基因数据分析 | SPCA, KAN, 一维卷积 | 多组学基因数据 | 五组真实数据实验 |
3230 | 2025-04-09 |
Isfahan Artificial Intelligence Event 2023: Lesion Segmentation and Localization in Magnetic Resonance Images of Patients with Multiple Sclerosis
2025, Journal of medical signals and sensors
DOI:10.4103/jmss.jmss_55_24
PMID:40191684
|
research paper | 该文章介绍了2023年伊斯法罕人工智能活动中关于多发性硬化症患者磁共振图像中病灶分割和定位的挑战 | 利用深度学习技术进行多发性硬化症患者磁共振图像中病灶的精确分割和定位 | 未提及具体方法的性能比较和详细数据集信息 | 通过病灶分割和定位帮助医生确定多发性硬化症的严重程度和进展 | 多发性硬化症患者的磁共振图像 | computer vision | 多发性硬化症 | 磁共振成像(MRI) | U-net及其他复杂网络 | image | NA |
3231 | 2025-04-09 |
An imaging and genetic-based deep learning network for Alzheimer's disease diagnosis
2025, Frontiers in aging neuroscience
IF:4.1Q2
DOI:10.3389/fnagi.2025.1532470
PMID:40191788
|
research paper | 提出了一种基于MRI和SNP数据的多模态深度学习分类网络,用于阿尔茨海默病(AD)诊断和轻度认知障碍(MCI)进展预测 | 利用CNN提取全脑结构特征,Transformer网络捕获遗传特征,并采用基于交叉Transformer的网络进行全面的特征融合,同时引入基于注意力图的可解释性方法分析AD相关结构和风险变异及其相互关系 | 数据集规模有限,大多数AD研究依赖于影像遗传学领域的统计方法 | 提高AD诊断和MCI进展预测的准确性 | 阿尔茨海默病(AD)和轻度认知障碍(MCI)患者 | digital pathology | geriatric disease | MRI, SNP | CNN, Transformer | image, genetic | 1,541名来自ADNI数据库的受试者 |
3232 | 2025-04-09 |
A phenotypic drug discovery approach by latent interaction in deep learning
2024-Oct, Royal Society open science
IF:2.9Q1
DOI:10.1098/rsos.240720
PMID:40191531
|
research paper | 本文提出了一种基于深度学习的潜在相互作用表型药物发现方法,通过端到端的方式利用药物和病毒遗传信息的文本表示进行高维潜在表示转换 | 该方法能够隐式考虑上位性和化学-遗传相互作用等复杂性,并处理数据稀缺的普遍挑战,为机制知识有限情况下的药物发现提供了有前景的替代方案 | 虽然展示了深度学习在数据稀缺场景中的可行性,但对潜在机制的理解仍有限 | 解决传统药物发现方法中高阶相互作用被忽视的问题,开发新的计算方法 | 药物和病毒的遗传信息 | machine learning | NA | deep learning, data augmentation | deep learning model | text | NA |
3233 | 2025-04-09 |
An automated approach for predicting HAMD-17 scores via divergent selective focused multi-heads self-attention network
2024-07, Brain research bulletin
IF:3.5Q2
|
研究论文 | 介绍了一种名为DSFMANet的深度学习模型,用于自动预测抑郁症患者的HAMD-17评分 | 提出了一种多分支结构的自注意力网络,通过人工配置不同分支的注意力焦点因子,实现了对不同子频带的注意力分布 | 未提及具体的数据集规模或模型在其他疾病上的泛化能力 | 提高抑郁症诊断的准确性,为临床决策提供支持 | 抑郁症患者的HAMD-17评分 | 机器学习 | 抑郁症 | 深度学习 | DSFMANet(多分支自注意力网络) | EEG信号 | NA |
3234 | 2025-04-09 |
Regulated Behavior in Living Cells with Highly Aligned Configurations on Nanowrinkled Graphene Oxide Substrates: Deep Learning Based on Interplay of Cellular Contact Guidance
2024-01-16, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.2c09815
PMID:38099607
|
研究论文 | 研究通过纳米皱纹石墨烯氧化物基底调控细胞行为,并利用深度学习技术解析细胞反应 | 开发了高度有序的纳米皱纹石墨烯氧化物表面,结合深度学习技术精确解析细胞行为 | 研究仅针对L929成纤维细胞和HT22海马神经元细胞,未涉及其他细胞类型 | 探索纳米拓扑结构对细胞行为的调控机制及其在组织工程中的应用 | L929成纤维细胞和HT22海马神经元细胞 | 数字病理学 | NA | 深度学习 | DL网络 | 图像 | L929成纤维细胞和HT22海马神经元细胞 |
3235 | 2025-04-09 |
Altered Motor Activity Patterns within 10-Minute Timescale Predict Incident Clinical Alzheimer's Disease
2024, Journal of Alzheimer's disease : JAD
DOI:10.3233/JAD-230928
PMID:38393904
|
研究论文 | 研究通过运动活动的分形模式变化预测临床阿尔茨海默病的发生 | 首次在10分钟时间尺度内发现运动活动分形模式变化与阿尔茨海默病临床发病的最强关联 | 研究仅基于运动活动数据,未结合其他生物标志物 | 确定运动活动分形调节(FMAR)在哪些时间尺度的变化最能预测阿尔茨海默病的临床发病 | 1,077名参与者,其中270人在随访期间出现临床阿尔茨海默病 | 数字病理学 | 阿尔茨海默病 | 活动记录仪(actigraphy)和深度学习 | DeepSurv, Cox模型, 随机生存森林 | 时间序列运动活动数据 | 1,077名参与者,随访长达15年 |
3236 | 2025-04-08 |
Multitask Deep Learning Models of Combined Industrial Absorption, Distribution, Metabolism, and Excretion Datasets to Improve Generalization
2025-Apr-07, Molecular pharmaceutics
IF:4.5Q1
|
研究论文 | 本文通过结合Genentech和Roche的ADME数据集,评估了扩大化学空间对机器学习模型性能的影响,并利用多任务神经网络架构同时建模多个终点 | 首次针对大规模历史ADME数据集进行跨站点数据结合的实验,并展示了多任务神经网络在提升模型泛化能力方面的优势 | 实验方法在两个站点间存在差异,对应终点的数据被建模为单独任务,可能影响模型的统一性 | 优化药物发现过程中化合物的吸收、分布、代谢和排泄(ADME)特性 | 来自Genentech和Roche的ADME数据集,包含超过100万次测量,涵盖11个检测终点 | 机器学习 | NA | 多任务学习 | 多任务(MT)神经网络 | 实验测量数据 | 超过100万次测量,涵盖11个检测终点 |
3237 | 2025-04-08 |
Evaluation of Caries Detection on Bitewing Radiographs: A Comparative Analysis of the Improved Deep Learning Model and Dentist Performance
2025-Apr-07, Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry ... [et al.]
IF:3.2Q1
DOI:10.1111/jerd.13470
PMID:40191981
|
研究论文 | 本研究评估了改进的深度学习模型YOLOv9c在咬翼X光片上检测龋齿的性能,并与牙医的表现进行了比较 | 优化了YOLOv9c模型的主干架构,减少了模型大小和计算需求,并在龋齿检测任务中超越了牙医的表现 | 研究仅评估了11种YOLO模型,可能未涵盖所有先进的深度学习模型 | 比较深度学习模型与牙医在咬翼X光片上检测龋齿的性能 | 咬翼X光片上的牙釉质和牙本质龋齿 | 计算机视觉 | 口腔疾病 | YOLO系列目标检测模型 | YOLOv9c | 图像 | 未明确提及具体样本数量 |
3238 | 2025-04-08 |
Optimal selection of a probabilistic machine learning model for predicting high run chase outcomes in T-20 international cricket
2025-Apr-07, Journal of sports sciences
IF:2.3Q2
DOI:10.1080/02640414.2025.2488157
PMID:40192186
|
研究论文 | 本研究评估了多种概率机器学习模型在预测T20国际板球比赛中高得分追逐结果的有效性 | 首次系统地比较了多种贝叶斯概率模型在板球高得分追逐预测中的表现,并确定CAWNB模型为最优选择 | 研究仅限于T20板球比赛,未考虑其他板球赛制,且未探索混合贝叶斯深度学习方法 | 评估不同概率机器学习模型在板球高得分追逐预测中的性能 | T20国际板球比赛中的高得分追逐情景 | 机器学习 | NA | 蒙特卡洛模拟,非参数统计检验 | Naïve Bayes, Bayesian Network, BRNN, HNB, CFWNB, CAWNB | 比赛数据 | NA |
3239 | 2025-04-08 |
Skull CT metadata for automatic bone age assessment by using three-dimensional deep learning framework
2025-Apr-07, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-025-03469-3
PMID:40192774
|
研究论文 | 本研究开发了一种基于三维深度学习框架的头骨CT元数据自动骨龄评估方法,并探索了新的头骨标记物 | 提出了一种新的三维深度学习框架,用于头骨CT元数据的骨龄评估,并探索了新的头骨标记物 | 模型在老年组中表现出较大的误差 | 开发一种准确的三维深度学习框架,用于头骨CT元数据的骨龄评估 | 头骨CT元数据 | 计算机视觉 | NA | CT扫描 | 三维深度学习框架 | 图像 | 1,085名患者(385,175个头骨CT切片),外加101名患者作为外部验证集 |
3240 | 2025-04-08 |
Phantom-based evaluation of image quality in Transformer-enhanced 2048-matrix CT imaging at low and ultralow doses
2025-Apr-07, Japanese journal of radiology
IF:2.9Q2
DOI:10.1007/s11604-025-01755-z
PMID:40193009
|
研究论文 | 比较标准512矩阵、标准1024矩阵和基于Swin2SR的2048矩阵幻影图像在不同扫描协议下的质量 | 使用Swin2SR超分辨率模型生成2048矩阵图像,相比标准512和1024矩阵图像,提高了空间分辨率并降低了图像噪声 | 研究仅基于Catphan 600幻影,未涉及真实患者数据 | 评估Transformer增强的2048矩阵CT图像在低剂量和超低剂量下的图像质量 | Catphan 600幻影 | 医学影像 | NA | 多排CT扫描、超分辨率重建 | Swin2SR、SRCNN | CT图像 | Catphan 600幻影 |