本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3261 | 2025-12-11 |
EEG motor imagery classification through a two-dimensional CNN-LSTM deep architecture and fuzzy decision-making
2025-Dec-10, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2025.2554256
PMID:41368697
|
研究论文 | 本文提出了一种基于二维CNN-LSTM深度架构和模糊决策的EEG运动想象分类方法 | 结合了二维CNN-LSTM模型和Choquet模糊积分进行决策融合,以提升在噪声EEG条件下的分类可靠性 | NA | 开发一种鲁棒的深度学习框架,用于从原始EEG信号中自动检测运动想象 | 原始EEG信号 | 机器学习 | NA | STFT | CNN, LSTM | EEG信号 | NA | NA | 二维CNN-LSTM | 准确率 | NA |
| 3262 | 2025-12-11 |
A deep learning system on monolithic implant-supported crown design: Evaluating AI-generated models against conventional software outputs
2025-Dec-10, Journal of prosthodontics : official journal of the American College of Prosthodontists
DOI:10.1111/jopr.70067
PMID:41368738
|
研究论文 | 本研究评估了一种基于Transformer的深度学习模型在生成单颗种植体支持冠(ISC)方面的有效性,并与传统软件生成的冠进行比较 | 首次将基于Transformer的深度学习模型(PoinTr架构)应用于种植体支持冠的自动化设计,相比传统软件,在轮廓、咬合形态和穿龈轮廓方面更接近技师设计 | 概念验证研究,样本量有限(311例),近中接触适应性在所有自动化组中仍不如技师设计冠 | 评估AI生成种植体支持冠的有效性,并与传统软件输出进行比较 | 单颗后牙第一磨牙区种植体支持冠的设计 | 计算机视觉 | NA | 深度学习 | Transformer | 数字印模图像 | 311例患者(291例用于训练,20例用于验证) | NA | PoinTr | 整体轮廓偏差, 咬合形态差异, 近中接触, 穿龈轮廓 | NA |
| 3263 | 2025-12-11 |
Deep learning-derived orthogonal minimum joint space width improves radiographic assessment of knee osteoarthritis severity and progression
2025-Dec-10, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
DOI:10.1002/ksa.70227
PMID:41368950
|
研究论文 | 本研究评估了一种基于深度学习自动测量的正交最小关节间隙宽度在检测和监测膝骨关节炎进展中的性能 | 提出了一种新的正交最小关节间隙宽度度量,该度量通过深度学习自动测量,相比传统的固定位置测量方法,在区分关节间隙狭窄严重程度和纵向响应性方面表现更优 | 研究为回顾性队列研究,数据来源于单一数据库(OAI),未来需要在其他人群或前瞻性研究中验证 | 评估一种人工智能衍生的影像学生物标志物(正交最小关节间隙宽度)在膝骨关节炎严重程度评估和进展监测中的性能 | 膝骨关节炎患者的膝关节X光片 | 数字病理学 | 骨关节炎 | 深度学习 | 深度学习模型 | 图像(X光片) | 15313张膝关节X光片,来自骨关节炎倡议(OAI)数据库,时间跨度为基线至72个月随访 | NA | NA | 受试者工作特征曲线下面积,标准化响应均值,相对标准化响应均值 | NA |
| 3264 | 2025-12-11 |
Synthetic computed tomography from magnetic resonance imaging: An editorial on deep learning approaches for hip and knee image translation
2025-Dec-10, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
DOI:10.1002/ksa.70229
PMID:41368970
|
评论 | 本文概述了从磁共振成像生成合成计算机断层扫描在肌肉骨骼护理中的应用,特别是髋关节和膝关节领域 | 总结了深度学习在MRI到CT图像转换中的创新方法,包括条件生成对抗网络和扩散模型,以提高解剖保真度和临床实用性 | NA | 探讨合成CT在减少辐射暴露、整合成像和术前规划中的潜力,以促进临床协作研究 | 髋关节和膝关节的肌肉骨骼成像数据 | 计算机视觉 | 肌肉骨骼疾病 | 磁共振成像,计算机断层扫描 | 条件生成对抗网络,扩散模型 | 图像 | NA | NA | NA | NA | NA |
| 3265 | 2025-12-11 |
Dynamic reward-augmented ensemble learning for EEG signal classification in major depressive disorder
2025-Dec-10, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ae2333
PMID:41369644
|
研究论文 | 本文提出了一种用于重度抑郁症EEG信号分类的动态奖励增强集成学习框架AABEL | 提出了基于强化学习的自适应权重分配机制、多尺度神经动力学特征融合方法以及端到端的奖励传播优化流程 | 未明确说明模型在跨数据集或临床环境中的泛化能力验证 | 开发自适应EEG信号分类框架以改进重度抑郁症的诊断 | 重度抑郁症患者的EEG信号 | 机器学习 | 重度抑郁症 | 脑电图 | CNN, GRU, Transformer | EEG信号 | 使用OpenNeuro ds003478数据集(具体样本数未明确说明) | NA | CNN, GRU, Transformer | 准确率, F1分数 | NA |
| 3266 | 2025-12-11 |
Association of skill and errors with outcomes in robotic rectal cancer surgery
2025-Dec-10, Surgical endoscopy
DOI:10.1007/s00464-025-12393-x
PMID:41369760
|
研究论文 | 本研究评估了机器人直肠癌手术中客观技能与错误工具,并提供了一个用于训练和测试深度学习模型的细粒度验证数据集 | 首次在机器人直肠癌手术中验证了细粒度错误和技能注释与临床结果的关联,为自动化评估和深度学习模型开发奠定了基础 | 样本量较小(30例手术),属于可行性研究,需要更大规模研究进一步验证 | 评估机器人直肠癌手术中的客观技能和错误工具,并建立细粒度数据集以支持深度学习模型开发 | 机器人辅助全直肠系膜切除术(RTME)的手术视频和临床数据 | 数字病理 | 直肠癌 | 手术视频分析,客观临床人类可靠性分析(OCHRA),可修改的机器人技能全球评估(M-GEARS) | 深度学习模型 | 手术视频,临床数据 | 30例机器人辅助全直肠系膜切除术(RTME)手术 | NA | NA | 错误数量,并发症发生率,手术时间延长,评分者间可靠性(匹配错误同意百分比),相关性分析(r值,p值) | NA |
| 3267 | 2025-12-11 |
Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics
2025-Dec-09, IEEE reviews in biomedical engineering
IF:17.2Q1
DOI:10.1109/RBME.2025.3625973
PMID:41364564
|
综述 | 本文系统回顾了深度学习在基于脑电图(EEG)和颅内脑电图(iEEG)的神经疾病诊断中的最新进展 | 整合了46个数据集和7种神经疾病的应用,强调预训练多任务模型在实现可扩展、泛化解决方案中的作用,并提出了标准化基准以评估模型 | 数据集异质性和任务变异性可能阻碍稳健深度学习解决方案的开发 | 推动神经疾病诊断向智能、适应性强的医疗系统发展 | 脑电图(EEG)和颅内脑电图(iEEG)信号 | 机器学习 | 神经疾病 | 脑电图(EEG),颅内脑电图(iEEG) | 深度学习模型 | 脑电信号 | 涉及46个数据集 | NA | NA | NA | NA |
| 3268 | 2025-12-11 |
Deep Learning-based Surrogate Model of Subject-Specific Finite-Element Analysis for Vertebrae
2025-Dec-09, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3642160
PMID:41364580
|
研究论文 | 本研究提出了一种基于深度学习/机器学习的代理模型,用于高效预测椎体应力分布 | 开发了一种集成椎体形状编码并采用表面节点与内部节点分离解码分支的新型深度学习代理模型,建立了端到端自动化处理流程 | 在椎体前下缘和椎弓根区域观察到局部预测差异 | 开发高效预测椎体应力分布的替代模型,以加速个性化生物力学评估 | L1椎体 | 数字病理学 | 老年疾病 | CT扫描 | 深度学习/机器学习 | 图像 | 基于42个真实CT扫描通过数据增强生成的3,960个合成L1椎体 | NA | NA | 平均绝对误差,R值 | NA |
| 3269 | 2025-12-11 |
A Similarity-Constrained Multi-way Gated Attention Network for Focused Ultrasound-induced Blood-brain Barrier Opening Evaluation
2025-Dec-09, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3642073
PMID:41364579
|
研究论文 | 本研究提出了一种基于门控注意力的新模型,用于利用时域声学信号片段预测聚焦超声诱导的血脑屏障开放结果 | 提出了一种结合声学编码器、多路门控注意力机制和包含相似性约束的任务特定损失函数的新型门控注意力模型,以增强类间区分能力并减少注意力模式的冗余 | 研究样本量相对有限(174次FUS治疗),且未明确提及模型在更广泛或不同患者群体中的泛化能力验证 | 开发一种高时间分辨率、高预测可靠性且可解释的方法,用于评估聚焦超声诱导的血脑屏障开放的有效性和安全性 | 聚焦超声治疗过程中的时域声学信号片段 | 机器学习 | 中枢神经系统疾病 | 聚焦超声 | 深度学习 | 时域声学信号 | 174次FUS治疗 | NA | 门控注意力模型 | 准确率, 召回率, AUC, F1分数 | NA |
| 3270 | 2025-12-11 |
The Road to Bedside: Addressing Key Hurdles for Deep Learning Prognostic Models in Light-Chain Cardiac Amyloidosis
2025-Dec-09, European heart journal. Cardiovascular Imaging
DOI:10.1093/ehjci/jeaf344
PMID:41364678
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 3271 | 2025-12-11 |
AI-Driven CT-MRI Image Fusion and Segmentation for Automatic Preoperative Planning of ACL Reconstruction: Development and Application
2025-Dec-09, The Journal of bone and joint surgery. American volume
DOI:10.2106/JBJS.25.00485
PMID:41364772
|
研究论文 | 本研究开发了一种基于AI的自动化术前规划系统,用于前交叉韧带重建,通过融合CT和MRI图像并进行分割,以优化隧道定位 | 提出了一个结合双UNet注册架构和多尺度信息融合的CT-MRI图像融合方法,用于动态3D重建和ACL插入点识别,并开发了深度学习框架来自动优化隧道定位 | 研究样本主要为中国汉族人群,年龄范围较窄(18-50岁),且男性占比较高(81.0%),可能限制结果的普适性 | 开发并评估一种AI驱动的自动化术前规划系统,用于前交叉韧带重建手术 | 200例ACL完整患者的膝关节CT和MRI扫描图像,以及后续的骨模型和临床患者 | 数字病理 | 前交叉韧带损伤 | CT-MRI图像融合,深度学习 | 深度学习 | 图像 | 200个膝关节扫描用于训练,36个骨模型和72例临床手术(36例AI引导,36例常规)用于验证 | NA | Dual-UNet | Dice系数,隧道长度偏差,隧道位置偏差(D-S, H-L, M-L, A-P方向) | NA |
| 3272 | 2025-12-11 |
AUTOENCODIX: a generalized and versatile framework to train and evaluate autoencoders for biological representation learning and beyond
2025-Dec-09, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-025-00916-4
PMID:41366150
|
研究论文 | 本文介绍了AUTOENCODIX,一个用于训练和评估自编码器的开源框架,旨在标准化和灵活处理生物表征学习任务 | 提出了一个标准化、灵活且可比较的自编码器框架,支持基于本体和跨模态的自编码器,增强了嵌入的可解释性和数据模态间的转换能力 | 未明确提及具体局限性,但框架的通用性可能依赖于特定数据集和架构的适配 | 开发一个用于生物表征学习的标准化自编码器框架,以促进数据驱动研究 | 泛癌研究数据集(如TCGA)、单细胞测序数据以及结合成像数据 | 机器学习 | NA | 自编码器、深度学习、数据整合 | 自编码器 | 多模态数据(包括基因组、单细胞测序和成像数据) | NA | NA | 基于本体的自编码器、跨模态自编码器 | 输入数据重建能力、嵌入质量、基于本体的嵌入可靠性 | NA |
| 3273 | 2025-12-11 |
Preoperative MVI prediction in intrahepatic cholangiocarcinoma via deep learning analysis of intratumoral and peritumoral features on multi-sequence MRI
2025-Dec-09, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-025-02107-z
PMID:41366360
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 3274 | 2025-12-11 |
A new hybrid model for enhancing low-dose CT images using EfficientNetV2 and WGAN-GP: a multi-loss approach
2025-Dec-09, European journal of medical research
IF:2.8Q2
DOI:10.1186/s40001-025-03579-z
PMID:41366715
|
研究论文 | 本研究提出了一种结合EfficientNetV2-M和WGAN-GP的混合模型,用于增强低剂量CT图像,通过多损失函数方法有效降噪并保留关键解剖结构 | 首次将EfficientNetV2-M作为多尺度特征提取器与WGAN-GP结合,采用加权对抗损失、像素级L1损失和感知损失的多损失优化策略 | 研究仅基于AAPM-Mayo数据集进行验证,未在其他多中心或不同扫描协议的数据上进行测试 | 开发一种有效的低剂量CT图像降噪方法,以提高图像质量并保持诊断准确性 | 低剂量CT图像 | 计算机视觉 | NA | 低剂量计算机断层扫描 | CNN, GAN | 图像 | AAPM-Mayo数据集(具体样本数未明确说明) | TensorFlow, PyTorch | EfficientNetV2-M, WGAN-GP | 峰值信噪比, 结构相似性指数 | NVIDIA Tesla T4 GPU |
| 3275 | 2025-12-11 |
A priority control list for LCMs in freshwater food chain by deep learning
2025-Dec-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.140362
PMID:41207232
|
研究论文 | 本研究利用深度学习方法,针对淡水食物链中液晶单体的持久性、生物累积性和毒性效应,构建并优化了优先控制清单 | 首次针对影响淡水食物链的商业液晶单体PBT效应构建了优先控制清单,并应用ResNet深度学习模型进行优化和预测 | 研究仅针对1431种商业液晶单体在特定淡水食物链模型中的效应,可能未涵盖所有环境场景或新型化合物 | 评估液晶单体在淡水食物链中的环境风险,并建立高精度优先控制清单 | 1431种商业液晶单体在淡水食物链(水蚤-斑马鱼-卷羽鹈鹕)中的PBT效应 | 机器学习 | NA | 分子对接, 机器学习, 深度学习 | ResNet | 分子对接数值矩阵 | 1431种液晶单体 × 3个营养级 × 3种PBT效应,共12879个数据点 | NA | ResNet | 准确率 | NA |
| 3276 | 2025-12-11 |
SpectraNet: A unified deep learning framework for infrared spectroscopy-based prediction of plastic recyclability, type classification, and microplastic identification
2025-Dec-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.140434
PMID:41232191
|
研究论文 | 本文提出了一个名为SpectraNet的统一深度学习框架,利用中红外光谱数据实现塑料可回收性预测、类型分类和微塑料识别 | 提出了首个将中红外光谱与先进算法相结合的统一深度学习框架,用于同时支持塑料可回收性评估、塑料类型识别和微塑料类型识别三项关键分析任务,并建立了开放的塑料和微塑料红外光谱数据库 | NA | 开发一个高效的深度学习框架,以应对全球塑料污染和微塑料污染问题,支持塑料回收、材料识别和微塑料监测 | 塑料和微塑料 | 机器学习 | NA | 中红外光谱 | 深度学习 | 光谱数据 | NA | NA | SpectraNet | 准确率 | NA |
| 3277 | 2025-12-11 |
Integrating RNA sequencing with deep learning-based metabolic toxicity prediction: A new perspective on screening prioritized liquid crystal monomers
2025-Dec-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.140465
PMID:41237628
|
研究论文 | 本研究提出了一种结合RNA测序与深度学习模型LCMsT-MTP的新方法,用于快速、高通量筛选自然水体中具有代谢毒性风险的液晶单体 | 首次将RNA测序数据与深度学习模型相结合,用于预测液晶单体的代谢毒性,克服了传统方法仅针对单一靶点或机制的局限,实现了对21种代谢毒性的同时识别 | 模型最初基于6种氟化液晶单体的RNA测序数据开发,对于非氟化液晶单体的预测需满足适用域测试,且无法覆盖所有857种潜在代谢毒性液晶单体的快速识别 | 开发一种快速、高通量的方法,用于筛选自然水体中具有代谢毒性风险的优先液晶单体 | 液晶单体,特别是对水生生物具有潜在代谢毒性的氟化和非氟化液晶单体 | 机器学习 | NA | RNA测序,深度学习 | 深度学习模型 | 基因表达序列数据,化学结构数据 | 6种氟化液晶单体在斑马鱼中的RNA测序数据,以及857种潜在代谢毒性液晶单体的预测应用 | NA | LCMsT-MTP | NA | NA |
| 3278 | 2025-12-11 |
Deep learning-integrated SERS platform for accurate identification of diverse phthalate ester subtypes
2025-Dec-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.140584
PMID:41297261
|
研究论文 | 本研究开发了一种集成深度学习的表面增强拉曼光谱(SERS)平台,用于快速准确识别和分类七种代表性邻苯二甲酸酯(PAEs)亚型 | 将等离子体金纳米柱(AuNP)基底形成的垂直和水平纳米间隙结构与深度学习算法相结合,构建了一个高灵敏度、可解释的现场部署检测平台 | 研究仅针对七种代表性PAEs,未涵盖所有可能的亚型;平台在接近监管阈值(0.1% w/w)浓度下的实际应用性能需进一步验证 | 开发一种快速、准确、可现场部署的邻苯二甲酸酯检测方法,用于环境监测和消费品安全评估 | 七种代表性邻苯二甲酸酯(PAEs)亚型 | 机器学习 | NA | 表面增强拉曼光谱(SERS) | 深度神经网络(DNN) | 光谱数据 | NA | NA | 深度神经网络(DNN) | 准确率 | NA |
| 3279 | 2025-12-11 |
Mulaqua: An interpretable multimodal deep learning framework for identifying PMT/vPvM substances in drinking water
2025-Dec-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.140573
PMID:41297258
|
研究论文 | 提出了一种名为Mulaqua的可解释多模态深度学习框架,用于识别饮用水中的持久性、移动性和毒性物质(PMT/vPvM) | 首个专门用于识别PMT/vPvM物质的深度学习方法,采用结合分子字符串表示和分子图像的新型多模态方法,并公开了代码 | 训练数据集中存在数据不平衡问题 | 开发高效的计算方法,以快速、经济地检测饮用水中的PMT/vPvM物质 | 饮用水中的持久性、移动性和毒性物质(PMT)以及非常持久和非常移动的物质(vPvM) | 机器学习 | NA | 深度学习,SMILES枚举数据增强 | 深度学习模型 | 分子字符串表示,分子图像 | NA | NA | NA | 准确率,F1分数,马修斯相关系数 | NA |
| 3280 | 2025-12-11 |
The effects of physical activity on diabetic retinopathy in type 2 diabetes using automated vascular analysis: a cohort study
2025-Dec-05, Journal of global health
IF:4.5Q1
DOI:10.7189/jogh.15.04319
PMID:41343177
|
研究论文 | 本研究利用计算机视觉和深度学习技术,探讨了2型糖尿病患者体力活动与糖尿病视网膜病变及视网膜血管直径之间的关系 | 首次在大型队列研究中结合计算机视觉和深度学习技术,系统评估体力活动对2型糖尿病患者视网膜血管直径和糖尿病视网膜病变发病的纵向影响 | 研究依赖自我报告的体力活动数据,可能存在回忆偏倚;仅针对中国上海地区人群,结果外推需谨慎 | 探究体力活动与2型糖尿病患者糖尿病视网膜病变及视网膜血管直径的关联,探索潜在机制并识别保护性运动方案 | 2型糖尿病患者 | 计算机视觉 | 糖尿病视网膜病变 | 计算机视觉, 深度学习 | NA | 视网膜图像, 临床数据 | 横断面分析42,992人,纵向队列3,669人 | NA | NA | 风险比, 置信区间 | NA |