本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3261 | 2025-07-07 |
Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks
2021-04-13, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-021-00599-z
PMID:33849483
|
研究论文 | 开发了一种基于3D foveal全卷积神经网络的工具,用于自动检测和分割胸部CT扫描中的淋巴结 | 使用3D foveal patches的全卷积神经网络进行淋巴结的自动检测和分割 | 在较小淋巴结(短轴直径5-10mm)的检测率(62.2%)低于较大淋巴结(91.6%) | 开发自动检测和分割胸部淋巴结的工具,以辅助临床工作和无观察者偏见的放射组学研究 | 胸部CT扫描中的淋巴结 | 数字病理 | 肺癌 | CT扫描 | 3D foveal全卷积神经网络 | 3D医学影像 | 训练集:89例增强CT扫描(4275个淋巴结),测试集:15例增强CT扫描 |
3262 | 2025-07-06 |
Deep learning methods for clinical workflow phase-based prediction of procedure duration: a benchmark study
2025-12, Computer assisted surgery (Abingdon, England)
DOI:10.1080/24699322.2025.2466426
PMID:39992712
|
研究论文 | 本研究评估了深度学习模型在预测心脏导管实验室(cath lab)手术结束时间方面的性能 | 仅使用视频分析得出的临床阶段作为算法输入,InceptionTime和LSTM-FCN模型实现了最准确的预测 | 需要在不同的手术环境中验证这些发现,并探索在不损失准确性的情况下优化训练时间的方法 | 评估深度学习模型在预测手术结束时间方面的性能,以提高心脏导管实验室的效率 | 心脏导管实验室(cath lab)的手术 | 机器学习 | 心血管疾病 | 视频分析 | InceptionTime, LSTM-FCN, LSTM with attention mechanism, standard LSTM, CNN, Transformer | 视频 | NA |
3263 | 2025-07-06 |
MLP-UNet: an algorithm for segmenting lesions in breast and thyroid ultrasound images
2025-12, Computer assisted surgery (Abingdon, England)
DOI:10.1080/24699322.2025.2523266
PMID:40580163
|
研究论文 | 提出了一种名为MLP-UNet的深度学习模型,用于自动分割乳腺和甲状腺超声图像中的病变区域 | MLP-UNet采用U形编码器-解码器架构,并在编码器阶段集成了基于MLP的模块(MAP),同时在跳跃连接中使用了轻量级注意力模块以增强特征表示 | NA | 提高乳腺和甲状腺超声图像中病变分割的准确性和实时性,以指导活检和手术中的精确针头放置 | 乳腺肿瘤和甲状腺结节 | 计算机视觉 | 乳腺癌, 甲状腺癌 | 深度学习 | MLP-UNet | 超声图像 | 使用了BUSI和DDTI两个数据集进行验证 |
3264 | 2025-07-06 |
AgCV: An Agentic framework for automating computer vision application
2025-Dec, MethodsX
IF:1.6Q2
DOI:10.1016/j.mex.2025.103424
PMID:40612263
|
研究论文 | 本文提出了一个名为Agentic Computer Vision (AgCV)的框架,旨在通过自主代理自动化复杂的计算机视觉任务 | AgCV框架结合了LangGraph、自然语言处理、深度学习和数据科学,构建了自适应、用户驱动的计算机视觉流程,并通过用户交互实现全自动化流水线 | NA | 自动化复杂的计算机视觉任务,降低技术门槛,提升计算机视觉应用的可访问性、可扩展性和灵活性 | 计算机视觉任务,如图像识别、分类和分割 | 计算机视觉 | NA | 自然语言处理、深度学习、数据科学 | LangGraph、RAG | 图像 | NA |
3265 | 2025-07-06 |
Automated material flow characterization of WEEE in sorting plants using deep learning and regression models on RGB data
2025-Aug-01, Waste management (New York, N.Y.)
DOI:10.1016/j.wasman.2025.114904
PMID:40424857
|
研究论文 | 本研究开发了一种基于RGB摄像头和深度学习的自动化方法,用于电子废弃物(WEEE)分选厂中的物料流成分分析 | 结合深度学习进行材料类型识别、回归模型预测单个颗粒质量,并将质量汇总为物料流成分 | 方法尚未在粉碎后的WEEE中成功应用 | 优化电子废弃物回收过程中的自动化粉碎和分离工艺 | 电子废弃物(WEEE)中的铁金属、非铁金属、印刷电路板和塑料 | 计算机视觉 | NA | RGB摄像头数据采集 | YOLO v11, K-nearest neighbors回归 | RGB图像 | NA |
3266 | 2025-07-06 |
Pollen morphology, deep learning, phylogenetics, and the evolution of environmental adaptations in Podocarpus
2025-Aug, The New phytologist
DOI:10.1111/nph.70250
PMID:40458972
|
研究论文 | 本研究利用深度学习和系统发育框架分析了Podocarpus花粉形态与环境因素的关系,探讨了温度、降水、海拔和太阳辐射对形态变化的影响 | 首次将深度学习量化特征与系统发育分析结合,揭示了环境适应在花粉形态进化中的作用 | 研究仅针对31个新热带区Podocarpidites化石样本,样本代表性可能有限 | 探究环境因素对Podocarpus花粉形态进化的影响 | Podocarpus花粉形态特征 | 植物进化生物学 | NA | 深度学习, 系统发育分析 | 深度学习模型(未指定具体类型), 性状-环境回归模型 | 花粉形态图像数据, 环境参数数据 | 31个新热带区Podocarpidites化石样本 |
3267 | 2025-07-06 |
Generation of ultrasonic and audible sound waves for the automatic classification of packaging waste in reverse vending machines
2025-Aug-01, Waste management (New York, N.Y.)
DOI:10.1016/j.wasman.2025.114934
PMID:40489934
|
研究论文 | 本文提出了一种利用声学传感器进行包装废物分类的新方法,以解决现有逆向自动售货机(RVMs)在废物分类中的局限性 | 采用超声波和可听声波分析声场变化,结合人工智能系统对材料进行分类,避免了传统方法对昂贵传感器和复杂环境条件的依赖 | 验证仅在受控环境中进行,尚未在实际RVMs环境中测试 | 开发一种基于声学技术的低成本、高效废物分类方法 | 塑料、玻璃、纸板和金属罐等可回收物品 | 机器学习 | NA | 指数正弦扫描(ESS)技术 | 经典机器学习和深度学习模型 | 声学数据 | NA |
3268 | 2025-07-06 |
Develop intelligent waste bin prototype based on fusion feature recognition of sounds and RGB images
2025-Aug-01, Waste management (New York, N.Y.)
DOI:10.1016/j.wasman.2025.114959
PMID:40554027
|
研究论文 | 开发了一种基于声音和RGB图像融合特征识别的智能垃圾桶原型,用于城市固体废物的分类 | 首次采用多模态深度学习方法(MDLM)整合图像和声音数据进行城市固体废物识别 | 改进相对有限,且未来研究需要探索包含更多RGB图像以开发更稳健的融合特征 | 提升城市固体废物的自动分类效率,推动循环经济的发展 | 城市固体废物(MSW) | 计算机视觉与音频处理 | NA | Mel频率倒谱系数(MFCCs),ResNet-101,LSTM网络 | MDLM(多模态深度学习模型),LSTM | 音频信号,RGB图像 | NA |
3269 | 2025-07-06 |
BengalDeltaFish: A local dataset for fish detection in Bangladeshi markets
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111764
PMID:40612467
|
research paper | 该论文介绍了BengalDeltaFish数据集,用于在孟加拉国市场的真实环境中检测鱼类 | 数据集在非受控的真实市场环境中收集,包含多种鱼类及罕见物种,填补了现有数据集的空白 | 数据集仅包含孟加拉国市场的鱼类,可能不适用于其他地区的鱼类识别 | 开发一个能够在真实市场环境中可靠检测和分类鱼类的AI工具 | 孟加拉国市场中的33种常见及罕见鱼类 | computer vision | NA | deep learning | YOLOv11s | image | 4560张标注图像,包含33种鱼类 |
3270 | 2025-07-06 |
teaLeafBD: A comprehensive image dataset to classify the diseased tea leaf to automate the leaf selection process in Bangladesh
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111769
PMID:40612469
|
research paper | 该研究创建了一个名为teaLeafBD的综合图像数据集,用于分类孟加拉国的病态茶叶,以自动化茶叶选择过程 | 提供了一个包含5278张病态和健康茶叶图像的全面数据集,覆盖多种疾病类型和不同气象条件下的图像采集 | 数据集仅覆盖孟加拉国的茶叶疾病,可能无法完全代表其他地区的疾病模式 | 提高对茶叶疾病如何影响茶树种植和茶叶生产的认识,并支持自动化疾病分类系统的开发 | 茶叶叶片 | computer vision | 植物疾病 | deep learning | NA | image | 5278张病态和健康茶叶图像 |
3271 | 2025-07-06 |
Assessment model of blast injury: A narrative review
2025-Jul-18, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2025.112830
PMID:40612508
|
综述 | 本文系统总结了爆炸冲击波的生物效应、传统评估模型的应用及其局限性,以及新兴技术——细胞/类器官模型和人工智能应用 | 介绍了冲击波细胞模型和类器官模型的成功开发,以及基于AI的模型在爆炸伤预测和评估中的应用 | 传统评估模型存在局限性,新兴技术的应用仍需进一步验证 | 评估爆炸伤的生物效应及其评估模型 | 爆炸冲击波引起的颅脑和肺部损伤 | 生物医学工程 | 爆炸伤 | 数值模拟、动物模型、死后人体替代模型(PMHS)、冲击波细胞模型、类器官模型、AI模型 | 机器学习/深度学习 | NA | NA |
3272 | 2025-07-06 |
A Feature-Augmented Transformer Model to Recognize Functional Activities from in-the-wild Smartwatch Data
2025-Jul-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3586074
PMID:40614149
|
研究论文 | 本文提出了一种特征增强的Transformer模型,用于从智能手表数据中识别功能活动 | 通过引入特征标记-Transformer嵌入来增强特征表示,以提高分类性能,并提出了一个大规模的功能活动数据集ArWISE | 功能活动识别由于其固有的复杂性和在真实环境中的变异性,仍存在挑战 | 研究功能活动识别方法,以支持认知健康评估、康复、术后恢复和慢性病管理 | 智能手表数据中的功能活动 | 机器学习 | 慢性病 | 特征增强和Transformer模型 | Transformer | 传感器数据 | 503名参与者,超过3200万个标记点 |
3273 | 2025-07-06 |
Mutualistic Multi-Network Noisy Label Learning (MMNNLL) Method and Its Application to Transdiagnostic Classification of Bipolar Disorder and Schizophrenia
2025-Jul-04, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3585880
PMID:40614156
|
研究论文 | 本文提出了一种互惠多网络噪声标签学习(MMNNLL)方法,用于提高双相情感障碍和精神分裂症的跨诊断分类准确性 | 通过多网络协作与竞争,最大化深度神经网络在识别和利用干净及噪声标签样本时的一致性,从而有效处理噪声标签数据 | 未提及具体样本量的限制或数据集的多样性问题 | 提高精神障碍的诊断准确性,特别是双相情感障碍(BP)和精神分裂症(SZ)的跨诊断分类 | 双相情感障碍和精神分裂症患者 | 机器学习 | 精神障碍 | 深度神经网络(DNNs) | MMNNLL | 神经影像数据和功能连接数据 | 未明确提及具体样本量,但使用了公开的CIFAR-10和PathMNIST数据集进行验证 |
3274 | 2025-07-06 |
eNCApsulate: neural cellular automata for precision diagnosis on capsule endoscopes
2025-Jul-04, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03425-x
PMID:40615761
|
研究论文 | 本文提出了一种基于神经细胞自动机(NCA)的无线胶囊内窥镜(WCE)精确诊断方法,用于出血分割和深度估计 | 首次在微型设备上实现可靠的出血分割和深度估计,通过蒸馏大型基础模型到轻量级NCA架构,并在ESP32微控制器上高效运行 | 未提及具体样本量或临床验证结果 | 开发适用于无线胶囊内窥镜的轻量级深度学习模型,实现精确诊断和定位 | 胶囊内窥镜图像 | 数字病理学 | 胃肠道疾病 | 神经细胞自动机(NCA)、模型蒸馏 | NCA | 图像 | NA |
3275 | 2025-07-06 |
Deep learning-based approach to third molar impaction analysis with clinical classifications
2025-Jul-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-93783-y
PMID:40603531
|
研究论文 | 本研究开发了一种基于深度学习的模型,用于自动检测和分类阻生第三磨牙,采用Pell和Gregory分类、Winter分类以及Pederson难度指数 | 使用YOLOv11模型自动化复杂阻生第三磨牙分类,提供高准确性和效率的临床决策支持系统 | 特定标签(如48-Distoangular-C-III)的F1分数较低,数据集多样性有待增强 | 开发自动化工具以改进阻生第三磨牙的临床分类和诊断 | 阻生第三磨牙的放射影像 | 计算机视觉 | 口腔疾病 | 深度学习 | YOLOv11 | 图像 | 训练集2300张图像(含7624颗阻生牙),验证集765张(含2580颗),测试集765张(含2493颗),共98种标签 |
3276 | 2025-07-06 |
BrainAGE latent representation clustering is associated with longitudinal disease progression in early-onset Alzheimer's disease
2025-Jul-03, Journal of neuroradiology = Journal de neuroradiologie
DOI:10.1016/j.neurad.2025.101365
PMID:40614437
|
研究论文 | 本研究利用基于Brain Age Gap Estimation (BrainAGE)的聚类算法对早发性阿尔茨海默病(EOAD)患者进行分层,以区分不同疾病进展速度的患者 | 首次将BrainAGE深度学习模型与k-means聚类相结合,用于EOAD患者的疾病进展分层 | 样本量相对较小(142名参与者),且为回顾性研究 | 寻找与早发性阿尔茨海默病进展相关的生物标志物 | 早发性阿尔茨海默病患者 | 数字病理学 | 阿尔茨海默病 | 结构磁共振成像(MRI) | 深度学习模型(BrainAGE)与k-means聚类 | 3D T1加权MRI图像 | 142名早发性阿尔茨海默病患者(纵向追踪6年),预训练使用3,227名健康受试者的MRI数据 |
3277 | 2025-07-06 |
Prioritizing perturbation-responsive gene patterns using interpretable deep learning
2025-Jul-02, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-61476-9
PMID:40603296
|
research paper | 介绍了一种名为River的可解释深度学习框架,用于识别在不同条件下表现出空间表达差异的基因 | 提出了DSEP基因优先排序作为新的分析任务,并开发了具有双分支预测架构和事后归因策略的River框架 | 未明确提及具体限制,但可能涉及模型在不同数据类型上的泛化能力 | 识别在不同生物条件下表现出差异空间表达模式的基因 | 基因的空间表达模式 | 生物信息学 | 三阴性乳腺癌、糖尿病、狼疮 | 空间分辨转录组学 | 深度学习 | 空间转录组数据 | 涉及多种生物背景(如胚胎发育、糖尿病影响的精子发生、狼疮相关的脾脏变化)和三阴性乳腺癌患者 |
3278 | 2025-07-06 |
AI-enabled Barilai-Borwein-Blinder-Oaxaca-Bernoulli Deep Classifier for Enhanced Crop Yield Prediction
2025-Jul-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03935-3
PMID:40603331
|
研究论文 | 本文探讨了将先进的人工智能(AI)深度学习方法与精确的作物产量预测相结合 | 提出了AI驱动的Barilai-Blinder-Oaxaca-Bernoulli深度分类器(BBO-BDC),结合了多种创新技术以提高作物产量预测的准确性、敏感性和特异性 | 未明确提及具体局限性 | 提高作物产量预测的准确性、敏感性和特异性,减少假阳性和假阴性案例 | 作物产量预测数据集中的原始样本 | 机器学习 | NA | Barilai-Borwein梯度Min-max归一化、Blinder-Oaxaca统计分解、Bernoulli深度信念网络、Xavier初始化函数、主成分分析 | BBO-BDC(Barilai-Blinder-Oaxaca-Bernoulli深度分类器) | NA | NA |
3279 | 2025-07-06 |
Dual smart sensor data-based deep learning network for premature infant hypoglycemia detection
2025-Jul-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03864-1
PMID:40603339
|
研究论文 | 介绍了一种名为HAPI-BELT的系统,该系统利用双智能传感器和深度学习算法来持续检测早产儿低血糖 | 结合智能摄像头和PPG传感器的智能腰带,通过GRU-LSTM网络实时监测早产儿的低血糖状态 | 未提及样本量或具体临床验证结果 | 开发一种实时监测早产儿低血糖的系统,以改善新生儿重症监护的医疗干预效果 | 早产儿 | 数字病理学 | 新生儿低血糖 | PPG传感器、智能摄像头、CAT-Swarm优化算法 | GRU-LSTM | 图像数据、PPG传感器数据 | NA |
3280 | 2025-07-06 |
Explainable few-shot learning workflow for detecting invasive and exotic tree species
2025-Jul-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-05394-2
PMID:40603367
|
research paper | 提出一种可解释的小样本学习工作流程,用于检测巴西大西洋森林中的入侵和外来树种 | 结合Siamese网络和可解释AI(XAI),在数据稀缺条件下实现树种分类并提供可视化解释 | 未提及具体的数据集规模限制或模型泛化能力的详细评估 | 开发一种可解释的小样本学习方法,用于森林管理和生物多样性保护 | 入侵和外来树种 | computer vision | NA | few-shot learning, XAI | Siamese network, MobileNet, CNN | UAV images | 3-shot learning |