本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
321 | 2025-06-06 |
Network Occlusion Sensitivity Analysis Identifies Regional Contributions to Brain Age Prediction
2025-Jun-01, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.70239
PMID:40470724
|
研究论文 | 该研究通过结合网络遮挡敏感性分析和精细人脑图谱,揭示了卷积神经网络在脑龄预测中不同脑区的贡献 | 开发了一种可解释的方案,结合网络遮挡敏感性分析和精细人脑图谱,揭示了模型学习的不变性,并识别了不同脑区在脑龄预测中的贡献 | 研究依赖于特定的数据集和模型架构,可能无法推广到其他数据集或模型 | 提高脑龄预测模型的可解释性,识别不同脑区对预测的贡献 | 人脑不同区域在脑龄预测中的贡献 | 计算机视觉 | 老年疾病 | 卷积神经网络(CNN) | CNN | 图像 | 训练集3054人,测试集555人,年龄范围8-80岁 |
322 | 2025-06-06 |
Underwater 3D measurement based on improved YOLOv8n and laser scanning imaging device
2025-Jun-01, The Review of scientific instruments
DOI:10.1063/5.0256098
PMID:40471019
|
研究论文 | 本文提出了一种名为YOLOv8-FWR的深度学习算法,结合激光扫描成像设备,有效提高了水下激光成像的效率和质量 | 引入了Focal_SPPF池化模块以减少背景噪声影响,提出了加权特征Concat模块以增强边缘小目标光条的检测,并通过结构重参数化技术优化了C2f模块,降低了模型参数数量同时提高了准确性 | NA | 提高水下激光成像的目标检测效率和准确性 | 水下激光扫描成像中的目标光条 | 计算机视觉 | NA | 激光扫描成像 | YOLOv8-FWR | 图像 | 通过模拟水下激光扫描成像过程构建的包含大量背景噪声的数据集,并在VOC2012和Underwater Detection Dataset (UDD)上进行了验证 |
323 | 2025-06-06 |
A Study on Predicting the Efficacy of Posterior Lumbar Interbody Fusion Surgery Using a Deep Learning Radiomics Model
2025-May-30, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.05.026
PMID:40450398
|
research paper | 本研究开发了一个结合临床数据、放射组学和深度学习的模型,用于预测后路腰椎间融合手术(PLIF)的疗效 | 提出了一个结合临床特征、放射组学特征和深度学习特征的联合模型,该模型在预测PLIF手术效果方面表现出最佳性能 | 研究为回顾性分析,可能存在选择偏倚;样本量相对有限 | 预测后路腰椎间融合手术(PLIF)的术后疗效 | 461例因退行性腰椎疾病接受PLIF手术的患者 | digital pathology | degenerative lumbar diseases | deep learning radiomics | logistic regression, random forest, deep learning model | MRI图像(矢状位T2加权图像) | 461例患者(训练集368例,测试集93例) |
324 | 2025-06-06 |
Integrative strategies in drug discovery: Harnessing genomics, deep learning, and computer-aided drug design
2025-May-30, Computational biology and chemistry
IF:2.6Q2
|
综述 | 本文探讨了基因组学、深度学习和计算机辅助药物设计在药物发现中的整合策略及其对现代药物研发的变革性影响 | 整合高通量测序技术、深度学习算法和计算机辅助药物设计,提高药物靶点预测准确性并加速候选药物识别 | 未具体说明所采用深度学习模型在特定疾病领域的性能局限 | 促进多组学数据与人工智能技术在药物研发中的协同应用 | 基因组数据、药物-靶点相互作用关系 | 计算机辅助药物设计 | NA | 高通量测序技术(基因组学/转录组学/蛋白质组学/代谢组学) | 深度学习 | 基因组数据 | NA |
325 | 2025-06-06 |
Near-zero photon bioimaging by fusing deep learning and ultralow-light microscopy
2025-May-27, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2412261122
PMID:40388622
|
研究论文 | 本文介绍了一种结合深度学习和超低光显微镜的近零光子生物成像方法,能够在极低光照条件下高保真地重建生物图像 | 提出了一种在kHz速率和比标准显微镜低10,000倍辐照度下操作的近零光子生物成像方法,结合了精心设计的显微镜和AI技术 | NA | 通过减少样本辐照度来增强光学显微镜的可靠性和可重复性 | 多细胞和亚细胞特征的结构 | 生物成像 | NA | 超低光显微镜和深度学习 | AI(未指定具体模型) | 图像 | NA |
326 | 2025-06-06 |
Federated prediction for scalable and privacy-preserved knowledge-based planning in radiotherapy
2025-May-20, ArXiv
PMID:40470470
|
research paper | 该研究开发了一个名为FedKBP+的联邦学习平台,旨在解决放射治疗计划中数据稀缺和异构性问题,同时保护患者数据隐私 | 提出了FedKBP+平台,支持集中式和完全去中心化的联邦学习策略,并通过Peer-to-Peer通信直接交换模型权重 | 未提及具体的临床实施障碍或平台在更大规模数据集上的性能表现 | 开发一个高效、一致且隐私保护的放射治疗计划预测平台 | 放射治疗计划中的预测任务 | machine learning | NA | federated learning, Google Remote Procedure Call (gRPC) | scale-attention network (SA-Net) | NA | NA |
327 | 2025-06-06 |
A Full-Spectrum Generative Lead Discovery (FSGLD) Pipeline via DRUG-GAN: A Multiscale Method for Drug-like/Target-specific Compound Library Generation
2025-May-12, Research square
DOI:10.21203/rs.3.rs-6516504/v1
PMID:40470212
|
research paper | 介绍了一种名为FSGLD的深度学习驱动流程,用于高效识别药物先导化合物 | FSGLD结合了生成模型与分子对接、分子动力学模拟等多种技术,显著优于传统的计算机辅助药物设计方法 | 未明确提及具体局限性 | 开发一种高效识别药物先导化合物的方法 | 药物先导化合物,特别是针对CB2受体的化合物 | machine learning | NA | 分子对接、分子动力学模拟、MM-PBSA、热力学积分(TI) | GAN | 分子数据 | 未明确提及样本数量 |
328 | 2025-06-06 |
Automatic Quantification of Serial PET/CT Images for Pediatric Hodgkin Lymphoma Using a Longitudinally Aware Segmentation Network
2025-May, Radiology. Artificial intelligence
DOI:10.1148/ryai.240229
PMID:39969278
|
research paper | 开发了一种纵向感知分割网络(LAS-Net),用于量化儿童霍奇金淋巴瘤患者的连续PET/CT图像 | LAS-Net引入了纵向交叉注意力机制,使得PET1的相关特征可以用于PET2的分析 | 外部测试队列的性能略有下降 | 开发一种能够量化儿童霍奇金淋巴瘤患者连续PET/CT图像的自动分割网络 | 儿童霍奇金淋巴瘤患者的连续PET/CT图像 | digital pathology | Hodgkin lymphoma | PET/CT | CNN | image | 297名儿童患者(内部数据集200名,外部测试数据集97名) |
329 | 2025-06-06 |
Automatic Segmentation and Molecular Subtype Classification of Breast Cancer Using an MRI-based Deep Learning Framework
2025-May, Radiology. Imaging cancer
DOI:10.1148/rycan.240184
PMID:40249269
|
research paper | 开发了一个基于MRI的深度学习框架,用于乳腺癌病灶分割和分子亚型自动分类 | 提出了一个结合3D ResU-Net和Ensemble ResNet的深度学习框架,实现了乳腺癌病灶的高精度分割和分子亚型的自动分类 | 研究为回顾性多中心研究,可能存在选择偏倚 | 开发一个基于MRI的深度学习框架,用于乳腺癌病灶分割和分子亚型分类 | 乳腺癌患者 | digital pathology | breast cancer | contrast-enhanced MRI | 3D ResU-Net, Ensemble ResNet | MRI图像 | 687名女性患者(平均年龄48.70岁±8.97) |
330 | 2025-05-03 |
Deep Learning Radiopathomics for Predicting Tumor Vasculature and Prognosis in Hepatocellular Carcinoma
2025-May, Radiology. Imaging cancer
DOI:10.1148/rycan.250141
PMID:40314587
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
331 | 2025-06-06 |
Anatomy-derived 3D Aortic Hemodynamics Using Fluid Physics-informed Deep Learning
2025-May, Radiology
IF:12.1Q1
DOI:10.1148/radiol.240714
PMID:40326877
|
research paper | 研究使用流体物理信息深度学习方法(FPI-CycleGAN)从解剖输入中量化主动脉血流动力学,作为4D流MRI的替代方案 | 提出了一种生成式人工智能方法(FPI-CycleGAN),能够直接从解剖输入中预测主动脉血流动力学,显著减少计算时间 | 研究依赖于回顾性数据,且需要进一步验证在更广泛人群中的适用性 | 评估FPI-CycleGAN在量化主动脉血流动力学中的可行性和准确性 | 主动脉血流动力学 | digital pathology | cardiovascular disease | 4D flow MRI, FPI-CycleGAN | CycleGAN | 3D segmentation, MRI | 1765名患者(其中1242名BAV患者和523名TAV患者) |
332 | 2025-06-06 |
Development and validation of a novel chronic pancreatitis pathological grade based on artificial intelligence
2025-May, Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.]
IF:2.8Q2
DOI:10.1016/j.pan.2025.04.011
PMID:40335378
|
研究论文 | 本研究开发并验证了一种基于深度学习的慢性胰腺炎病理分级系统(Histopathology-derived CPpG),并通过放射组学评分(DLRS)预测疾病严重程度 | 首次提出基于人工智能的慢性胰腺炎病理分级系统,并开发了非侵入性的DLRS用于动态监测疾病严重程度 | 研究为回顾性设计,且病理确认的CP样本量相对较小(181例) | 开发慢性胰腺炎的客观病理分级系统并验证其临床价值 | 慢性胰腺炎和复发性急性胰腺炎患者 | 数字病理 | 慢性胰腺炎 | 深度学习,放射组学 | DeeplabV3+ | 全切片图像,CT扫描 | 2054例患者(含181例病理确诊CP) |
333 | 2025-06-06 |
Quantitative dynamics of neural uncertainty in sensory processing and decision-making during discriminative learning
2025-May, Experimental & molecular medicine
DOI:10.1038/s12276-025-01456-7
PMID:40335633
|
研究论文 | 本研究使用深度学习方法量化了初级体感皮层前肢区(fS1)在振动频率辨别任务中的神经不确定性 | 引入了一种transformer模型,用于解码随时间不一致跟踪的神经数据,揭示了fS1在振动刺激和决策过程中编码不确定性的关键作用 | 研究仅关注fS1区域,未涉及其他可能参与不确定性处理的大脑区域 | 探究感觉皮层中神经不确定性的定量表征及其在辨别学习中的作用 | 初级体感皮层前肢区(fS1)的神经活动 | 神经科学 | NA | 深度学习 | transformer | 神经活动数据 | NA |
334 | 2025-06-06 |
Interactive Explainable Deep Learning Model for Hepatocellular Carcinoma Diagnosis at Gadoxetic Acid-enhanced MRI: A Retrospective, Multicenter, Diagnostic Study
2025-May, Radiology. Imaging cancer
DOI:10.1148/rycan.240332
PMID:40445095
|
研究论文 | 开发基于钆塞酸增强MRI的人工智能模型,辅助放射科医生诊断肝细胞癌 | 提出了一种交互式可解释的深度学习模型,能够通过分析预训练病变分类器的激活模式推断LI-RADS特征的存在 | 研究为回顾性设计,可能受到选择偏差的影响 | 开发AI模型辅助肝细胞癌诊断 | 肝局灶性病变患者 | 数字病理 | 肝细胞癌 | 钆塞酸增强MRI | 深度学习 | MRI图像 | 839名患者(1023个肝局灶性病变) |
335 | 2025-06-06 |
Predicting Recurrence in Locally Advanced Rectal Cancer Using Multitask Deep Learning and Multimodal MRI
2025-May, Radiology. Imaging cancer
DOI:10.1148/rycan.240359
PMID:40445102
|
research paper | 开发并验证了一种名为MultiRecNet的多任务深度网络,用于全自动预测接受新辅助放化疗(nCRT)治疗的局部晚期直肠癌(LARC)患者的无病生存期(DFS) | MultiRecNet能够在单一框架内同时执行分割、分类和生存预测任务,实现了全自动端到端的预后预测 | 研究为回顾性设计,可能存在选择偏差 | 预测局部晚期直肠癌患者的无病生存期 | 接受nCRT治疗的局部晚期直肠癌患者 | digital pathology | rectal cancer | multimodal MRI | MultiRecNet (multitask deep learning) | MRI图像(T2、ADC等)及临床指标 | 445名患者(训练集261名,验证集37名,内部测试集75名,外部测试集72名) |
336 | 2025-06-06 |
The Advances in Deep Learning Modeling of Polyadenylation Codes
2025 May-Jun, Wiley interdisciplinary reviews. RNA
DOI:10.1002/wrna.70017
PMID:40468587
|
综述 | 本文总结了深度学习模型在解析多聚腺苷酸化调控方面的进展及其应用 | 深度学习模型能够无偏地量化基序间的相互作用,解析序列复杂性,并捕捉顺式调控基序间复杂的位置相互作用 | NA | 探讨深度学习模型在多聚腺苷酸化调控研究中的应用 | 真核生物mRNA和lncRNA的3'端切割和多聚腺苷酸化过程 | 自然语言处理 | NA | 深度学习 | 深度学习模型 | 序列数据 | NA |
337 | 2025-06-06 |
Deep learning-based temporal MR image reconstruction for accelerated interventional imaging during in-bore biopsies
2025-May, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.3.035001
PMID:40469203
|
research paper | 该研究通过深度学习技术加速前列腺癌活检过程中的MR图像重建和器械定位 | 提出了一种基于深度学习的时空MR图像重建模型,能够在16倍欠采样率下保持图像质量并最小化器械定位误差 | 单中心回顾性研究,可能缺乏外部验证 | 加速经直肠MR引导的前列腺活检过程 | 前列腺癌患者 | digital pathology | prostate cancer | MR imaging | nnU-Net | image | 1289名患者的8464张MR二维多层扫描图像 |
338 | 2025-06-06 |
Artificial intelligence to predict treatment response in rheumatoid arthritis and spondyloarthritis: a scoping review
2025-04-07, Rheumatology international
IF:3.2Q2
DOI:10.1007/s00296-025-05825-3
PMID:40192881
|
综述 | 本文综述了人工智能在预测类风湿性关节炎和脊柱关节炎治疗反应中的应用类型和方法 | 总结了AI技术在预测类风湿性关节炎和脊柱关节炎治疗反应中的多种应用,包括监督学习、无监督聚类和深度学习等方法 | 方法学异质性限制了结果的普遍适用性,且存在数据整合和外部验证的挑战 | 分析人工智能技术在预测类风湿性关节炎和脊柱关节炎治疗反应中的应用 | 类风湿性关节炎(RA)和脊柱关节炎(SpA)患者 | 数字病理学 | 类风湿性关节炎, 脊柱关节炎 | 监督机器学习(如随机森林、支持向量机)、无监督聚类、深度学习 | 随机森林, 支持向量机, 深度学习模型 | 电子医疗记录、临床生物标志物、遗传和蛋白质组数据、影像数据 | 89项研究(74项关于RA,7项关于SpA,4项关于银屑病关节炎,4项混合研究) |
339 | 2025-04-03 |
Editorial Comment: Deep Learning Unlocks the Prognostic Importance of Thoracic Aortic Calcification
2025-Apr-02, AJR. American journal of roentgenology
DOI:10.2214/AJR.25.33012
PMID:40172167
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
340 | 2025-06-06 |
Artificial intelligence in abdominal and pelvic ultrasound imaging: current applications
2025-Apr, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04640-x
PMID:39487919
|
综述 | 本文综述了人工智能在腹部和盆腔超声成像中的当前应用 | 提供了关于AI在腹部和盆腔超声成像中最新应用的全面概述 | 大多数研究为单中心回顾性研究,存在较高的偏倚风险,且很少有应用经过前瞻性验证或多中心研究 | 探讨人工智能在腹部和盆腔超声成像中的应用潜力 | 腹部和盆腔超声成像 | 医学影像 | 多器官疾病 | 深度学习、机器学习、自然语言处理、机器人技术 | NA | 超声图像 | 57篇文献,涉及128个标题 |