深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26283 篇文献,本页显示第 3401 - 3420 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
3401 2025-05-13
Quantitative CT Scan Analysis in Rheumatoid Arthritis-Related Interstitial Lung Disease
2025-May, Chest IF:9.5Q1
research paper 该研究探讨了深度学习基于CT影像的肺纤维化定量分析在评估类风湿关节炎相关间质性肺病(RA-ILD)疾病严重程度、预测死亡率和识别疾病进展中的效用 使用数据驱动的纹理分析(DTA)方法定量评估CT扫描,揭示了肺纤维化定量评分与肺功能和生存率之间的关联 研究样本量相对较小,验证队列仅包含50名患者,可能影响结果的普遍性 评估定量CT影像在RA-ILD中的临床应用价值,特别是在预测疾病进展和死亡率方面的作用 类风湿关节炎相关间质性肺病(RA-ILD)患者 digital pathology rheumatoid arthritis-related interstitial lung disease CT imaging, data-driven texture analysis (DTA) deep learning image 289名患者的主要队列和50名患者的验证队列
3402 2025-05-13
Artificial Intelligence in Detecting and Segmenting Vertical Misfit of Prosthesis in Radiographic Images of Dental Implants: A Cross-Sectional Analysis
2025-May, Clinical oral implants research IF:4.8Q2
研究论文 本研究评估了ResNet-50和U-Net模型在牙科种植体根尖周X光片中检测和分割垂直不匹配的能力 首次将ResNet-50和U-Net深度学习模型应用于牙科种植体垂直不匹配的检测和分割,并与临床医生的表现进行了比较 研究仅基于根尖周X光片,未考虑其他影像学检查方法 评估人工智能在牙科种植体垂直不匹配检测和分割中的性能 牙科种植体根尖周X光片 计算机视觉 牙科疾病 深度学习 ResNet-50, U-Net 图像 638张根尖周X光片
3403 2025-05-13
Interpretation of basal nuclei in brain dopamine transporter scans using a deep convolutional neural network
2025-May-01, Nuclear medicine communications IF:1.3Q3
research paper 使用深度卷积神经网络解释脑部多巴胺转运体扫描中的基底核 采用深度学习技术(特别是迁移学习)来辅助帕金森病的临床诊断,提高了图像解释的客观性和准确性 研究为回顾性研究,样本量有限(416例),且仅使用了三种预训练模型 通过深度学习技术促进帕金森病的临床诊断 临床不确定帕金森综合征患者的DAT SPECT扫描图像 digital pathology Parkinson's disease DAT SPECT, 99m Tc-TRODAT-1 CNN (Xception, InceptionV3, ResNet101) image 416例临床不确定帕金森综合征患者
3404 2025-05-13
GLEAM: A multimodal deep learning framework for chronic lower back pain detection using EEG and sEMG signals
2025-May, Computers in biology and medicine IF:7.0Q1
研究论文 介绍了一种名为GLEAM的多模态深度学习框架,用于通过EEG和sEMG信号检测慢性下腰痛强度 开发了一种新型去噪GAN用于清理EEG和sEMG信号,设计并集成了新的ETLSTM架构作为GLEAM模型中的分类器,引入了GLEAM混合深度学习框架以实现稳健可靠的LBP强度评估 NA 诊断下腰痛强度,提供创新的诊断和治疗解决方案 下腰痛患者 机器学习 下腰痛 EEG和sEMG信号处理 GAN-Convolution-Transformer, ETLSTM EEG和sEMG信号 NA
3405 2025-05-13
Accurate phenotyping of luminal A breast cancer in magnetic resonance imaging: A new 3D CNN approach
2025-May, Computers in biology and medicine IF:7.0Q1
research paper 本研究提出了一种基于3D CNN的新方法,用于在MRI中准确表型luminal A型乳腺癌 提出了一种基于定量医学成像生物标志物(QIB)的新3D CNN模型,用于诊断luminal A型乳腺癌,其性能优于现有方法 数据集中存在类别不平衡问题,采用了类别加权策略进行缓解 提高luminal A型乳腺癌的诊断准确性和效率,为患者制定个性化治疗方案 luminal A型乳腺癌和非luminal A型病变 digital pathology breast cancer MRI 3D CNN 3D volumetric MRI images 公共领域MRI乳腺癌数据集(Duke-Breast-Cancer-MRI)
3406 2025-05-13
A multi-stage fusion deep learning framework merging local patterns with attention-driven contextual dependencies for cancer detection
2025-May, Computers in biology and medicine IF:7.0Q1
research paper 提出了一种多阶段融合深度学习框架,结合局部模式和注意力驱动的上下文依赖,用于癌症检测 提出了PADBSRNet模型和PADBSRNet-ViT混合方法,整合了多种注意力机制和特征融合策略,有效提取局部-全局上下文特征 未提及具体局限性 提高癌症诊断的速度和准确性 脑肿瘤、皮肤癌和肺癌 digital pathology brain tumor, skin cancer, lung cancer deep learning PADBSRNet, ViT image Figshare Brain Tumor Dataset, IQ-OTH/NCCD Dataset, Skin Cancer: Malignant vs. Benign Dataset
3407 2025-05-13
Artificial intelligence applied to epilepsy imaging: Current status and future perspectives
2025-May, Revue neurologique IF:2.8Q2
review 本文综述了人工智能在癫痫影像学中的应用现状及未来展望 探讨了深度学习和机器学习在癫痫影像学中的多种应用,包括病灶检测、癫痫灶的侧向化和定位、术后结果预测以及癫痫患者与健康个体的自动区分 需要严格的数据监管措施以确保患者数据安全,且依赖大规模数据集 提升癫痫的诊断和治疗水平 癫痫影像学数据 数字病理 癫痫 深度学习(DL)和机器学习(ML) NA 神经影像数据 NA
3408 2025-05-13
Unlocking new frontiers in epilepsy through AI: From seizure prediction to personalized medicine
2025-May, Epilepsy & behavior : E&B IF:2.3Q2
review 本文探讨了人工智能在癫痫护理中的革命性作用,包括癫痫发作预测、诊断精确性提升以及个性化治疗 利用机器学习和深度学习技术改进癫痫监测、自动化EEG分析,并促进个性化治疗策略 模型准确性、可解释性以及在不同患者群体中的适用性仍存在挑战 研究人工智能在癫痫护理中的应用及其潜在影响 癫痫患者及其治疗管理 machine learning epilepsy machine learning, deep learning NA EEG数据 NA
3409 2025-05-13
Artificial intelligence for the detection of interictal epileptiform discharges in EEG signals
2025-May, Revue neurologique IF:2.8Q2
review 本文回顾了利用人工智能技术检测脑电图信号中的间歇性癫痫样放电(IEDs)的各种方法,评估了它们的性能和局限性 探讨了从传统机器学习到深度学习技术在IED检测中的应用,并强调了AI工具在临床工作流程中的整合 需要公开代码、标准化数据集和指标,以优化临床实施 提高间歇性癫痫样放电(IEDs)检测的准确性和效率 脑电图(EEG)信号中的间歇性癫痫样放电(IEDs) 自然语言处理 癫痫 深度学习,传统机器学习 NA EEG信号 NA
3410 2025-05-13
Automated Deep Learning Pipeline for Characterizing Left Ventricular Diastolic Function
2025-Apr-30, medRxiv : the preprint server for health sciences
research paper 开发了一个自动化深度学习流程,用于评估左心室舒张功能 使用8个AI模型构建的工作流自动化评估LVDD,显著提高了与ASE指南的一致性 模型性能在不同医疗中心之间存在差异,且未说明具体使用了哪些AI模型类型 改进左心室舒张功能障碍(LVDD)的临床评估方法 来自两个学术医疗中心的超声心动图研究数据 digital pathology cardiovascular disease echocardiography AI models (具体类型未说明) medical imaging data 训练集:155,000例研究;验证集:Cedars-Sinai医学中心955例,斯坦福医疗中心1,572例
3411 2025-05-13
Evaluating the feasibility of 12-lead electrocardiogram reconstruction from limited leads using deep learning
2025-Apr-25, Communications medicine IF:5.4Q1
研究论文 本研究开发了一种神经网络,用于从单导联和双导联心电图重建12导联心电图,并评估了数学准确性 使用生成对抗网络从有限导联重建12导联心电图,探索了AI在心电图重建中的应用 重建的心电图存在回归均值效应,不适合临床使用 评估从有限导联心电图重建12导联心电图的可行性 9514名来自PTB-XL队列的个体 机器学习 心血管疾病 心电图分析 GAN 心电图信号 9514名个体
3412 2025-05-13
Automated cervix biometry, volumetry and normative models for 3D motion-corrected T2-weighted 0.55-3T fetal MRI during 2nd and 3rd trimesters
2025-Apr-17, medRxiv : the preprint server for health sciences
research paper 该研究开发了一种用于孕妇宫颈3D T2加权图像自动多层分割和生物测量的深度学习流程 首次提出了用于孕妇宫颈MRI自动测量的深度学习流程,并生成了公开可用的3D群体平均图谱 研究仅评估了20个数据集,样本量相对较小 开发自动化方法来改进孕妇宫颈MRI测量 孕妇宫颈 digital pathology NA 3D T2加权MRI deep learning 3D MRI图像 20个评估数据集和270个正常妊娠案例
3413 2025-05-13
PanEcho: Complete AI-enabled echocardiography interpretation with multi-task deep learning
2025-Apr-16, medRxiv : the preprint server for health sciences
research paper 开发并评估了一个名为PanEcho的AI系统,用于自动化超声心动图的解释,通过多任务深度学习完成39个超声心动图标签和测量的全面分析 提出了首个能够全面自动化解释超声心动图的AI系统PanEcho,支持多任务深度学习,并在不同地理和时间范围内保持高准确性 研究依赖于回顾性数据,可能无法完全反映前瞻性临床环境中的表现 开发并验证一个AI系统,用于自动化超声心动图的解释,提高心血管疾病的诊断效率和准确性 超声心动图视频和相关的诊断分类及参数估计任务 digital pathology cardiovascular disease multi-task deep learning 深度学习模型(具体类型未明确说明) video 1.2 million echocardiographic videos from 32,265 TTE studies of 24,405 patients
3414 2025-05-13
Computational characterization of lymphocyte topology on whole slide images of glomerular diseases
2025-Apr-14, medRxiv : the preprint server for health sciences
研究论文 本研究通过计算量化淋巴细胞炎症的拓扑结构,并测试其临床相关性,旨在改进肾小球疾病中炎症细胞分布的评估方法 开发了一种基于图的生境聚类算法,用于识别密集与稀疏的淋巴细胞生境,并提取了26种高通量定量病理组学特征 研究样本量相对有限(N=333),且仅针对FSGS和MCD两种疾病 通过计算病理学方法改进肾小球疾病中淋巴细胞炎症的评估和预后预测 肾小球疾病患者的淋巴细胞分布模式 数字病理学 肾小球疾病(FSGS和MCD) 深度学习、图建模、LASSO-正则化Cox比例风险模型 深度学习模型、图模型 全切片图像(WSI) 333名NEPTUNE/CureGN参与者(155名FSGS和178名MCD患者)
3415 2025-05-13
Multitask Deep Learning Models of Combined Industrial Absorption, Distribution, Metabolism, and Excretion Datasets to Improve Generalization
2025-Apr-07, Molecular pharmaceutics IF:4.5Q1
研究论文 本文通过结合Genentech和Roche的ADME数据集,评估了扩大化学空间对机器学习模型性能的影响,并利用多任务神经网络架构同时建模多个终点 首次对大规模历史ADME数据集进行跨站点数据结合的实验,并展示了多任务模型在提高泛化能力方面的优势 实验方法存在差异时,无法直接聚合数据 优化药物发现过程中化合物的吸收、分布、代谢和排泄(ADME)特性 来自Genentech和Roche的ADME数据集 机器学习 NA 多任务(MT)神经网络 神经网络 实验测量数据 超过100万次个体测量,分布在11个检测终点
3416 2025-05-13
Performance of artificial intelligence-based diagnosis and classification of peri-implantitis compared with periodontal surgeon assessment: a pilot study of panoramic radiograph analysis
2025-Apr-02, Journal of periodontal & implant science
研究论文 本研究评估了深度学习模型在全景X光片上诊断和分类种植体周围炎相关骨缺损的性能 使用深度学习模型(YOLOv8)进行种植体周围炎骨缺损的诊断和分类,并与牙周外科医生的诊断准确性进行比较 数据集规模有限,未来研究需要扩展数据集并整合多模态影像 评估深度学习模型在种植体周围炎诊断和分类中的性能 种植体周围炎相关的骨缺损 数字病理 种植体周围炎 深度学习 YOLOv8 全景X光片 1,075张全景X光片(来自426名患者,共2,250个种植位点)
3417 2025-05-13
De novo design of transmembrane fluorescence-activating proteins
2025-Apr, Nature IF:50.5Q1
研究论文 本文介绍了通过深度学习和基于能量的方法设计能够紧密结合小分子的跨膜蛋白质 首次实现了跨膜蛋白质的从头设计,能够特异性结合小分子并激活荧光,具有高亮度和量子产率 NA 设计能够特异性结合小分子的跨膜蛋白质 跨膜蛋白质和小分子配体 蛋白质设计 NA 深度学习、基于能量的方法、梯度引导幻觉 NA 蛋白质结构数据 活细菌和真核细胞的膜组分
3418 2025-05-13
Improving explanations for medical X-ray diagnosis combining variational autoencoders and adversarial machine learning
2025-Apr, Computers in biology and medicine IF:7.0Q1
研究论文 提出了一种结合变分自编码器和对抗性机器学习的新型深度学习架构,用于医学X射线诊断的可解释人工智能 利用变分自编码器特性在低维嵌入空间中生成图像的线性修改,并将其重建为原始图像空间中的非线性解释,通过全局和局部正则化潜在空间存储视觉和语义信息 未提及具体样本量或临床验证结果 提升医学影像诊断中人工智能系统的可解释性 医学X射线影像 计算机视觉 NA 变分自编码器(VAE)、对抗性机器学习、多目标遗传算法 VAE 医学影像 NA
3419 2025-05-13
A dual-stage framework for segmentation of the brain anatomical regions with high accuracy
2025-Apr, Magma (New York, N.Y.)
研究论文 本研究提出了一种基于深度学习的两阶段框架,用于精确分割大脑MR区域,旨在识别大脑内不同解剖结构的位置和形状细节 采用两阶段3D分割技术,第二阶段使用SegResNet细化特定区域的细分,显著提高了分割精度 未提及具体的数据集规模或多样性限制 开发一种高精度的大脑MR区域分割方法 成人受试者的大脑MR图像,包括认知正常者和认知衰退者 数字病理学 认知衰退 3D分割技术 3D U-Net和SegResNet MR图像 未明确提及具体样本数量
3420 2025-05-13
Analysis of AI foundation model features decodes the histopathologic landscape of HPV-positive head and neck squamous cell carcinomas
2025-Apr, Oral oncology IF:4.0Q2
research paper 利用AI基础模型分析HPV阳性头颈部鳞状细胞癌的组织病理学特征 使用UNI基础模型和HistoXGAN生成对抗网络,首次系统性地识别并描述了HPV阳性HNSCC的组织学特征及其变异性模式 研究依赖于合成图像的分析,可能无法完全反映真实组织样本的所有复杂性 揭示HPV阳性头颈部鳞状细胞癌的组织病理学特征,并开发基于组织学的HPV状态预测方法 981例头颈部鳞状细胞癌患者的H&E染色切片 digital pathology head and neck squamous cell carcinomas self-supervised learning (SSL), generative adversarial network (GAN) UNI, HistoXGAN image 981例HNSCC患者
回到顶部