深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 38773 篇文献,本页显示第 3681 - 3700 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
3681 2025-12-13
Recent advances and applications of single-cell sequencing in insects
2026-Feb, Current opinion in insect science IF:5.8Q1
综述 本文综述了单细胞测序技术在昆虫科学中的最新进展与应用,探讨了该技术如何推动昆虫生物学从描述性研究转向功能与机制研究 系统总结了单细胞多组学技术(转录组、表观基因组、蛋白质组、代谢组)在昆虫研究中的应用,并展望了高通量空间转录组学等新技术的前景 作为综述文章,未提出新的实验数据或方法,主要基于现有文献进行归纳总结 总结单细胞测序技术在昆虫生物学研究中的最新进展,并探讨其未来发展方向 昆虫(泛指) 基因组学 NA 单细胞测序、单细胞多组学技术(转录组、表观基因组、蛋白质组、代谢组)、空间转录组学 深度学习算法 基因组数据、转录组数据、表观基因组数据、蛋白质组数据、代谢组数据 NA NA NA NA NA
3682 2025-12-13
A data-driven modeling approach to prediction of persistent foot drop after gastroc-soleus lengthening surgery in children with cerebral palsy
2026-Feb, Gait & posture IF:2.2Q2
研究论文 本研究开发了一种基于术前步态和临床数据的深度学习模型,用于预测脑瘫儿童接受腓肠肌-比目鱼肌延长术后持续性足下垂的风险 首次结合卷积神经网络和前馈神经网络,利用术前多模态数据预测术后足下垂,并采用SHAP方法解释模型以识别关键风险因素 样本量相对有限(110名儿童),且仅针对脑瘫儿童,模型在其他人群中的泛化能力尚未验证 预测脑瘫儿童接受腓肠肌-比目鱼肌延长术后发生持续性足下垂的风险,并识别相关的术前风险因素 110名患有脑瘫的儿童(36名单瘫,74名双瘫) 数字病理学 脑瘫 三维步态分析,物理检查 CNN, 前馈神经网络 步态数据,临床数据 110名儿童 NA 卷积神经网络,前馈神经网络 均方根误差,准确率 NA
3683 2025-12-13
Circulating microRNAs in viral myocarditis: Advancements in biological understanding and potential clinical applications
2026-Jan-10, Gene IF:2.6Q2
综述 本文系统综述了循环microRNAs在病毒性心肌炎中的生物学作用、临床诊断与治疗应用潜力及局限性 整合了高通量测序、深度学习和人工智能技术,以深入理解循环microRNAs在病毒性心肌炎发病机制中的调控网络作用 作为综述文章,未进行原始实验研究,依赖于现有文献证据,可能存在发表偏倚 为改善病毒性心肌炎的精准诊断和治疗建立理论基础和策略框架 循环microRNAs及其在病毒性心肌炎中的调控网络 自然语言处理 心血管疾病 高通量测序技术 深度学习 文本 NA NA NA NA NA
3684 2025-12-13
Open Lumbar Spine Image Analysis: A 3D Slicer Extension for Segmentation, Grading, and Intervertebral Disc Height Index With Multi-Data Set Validation
2026-Jan-01, Spine IF:2.6Q1
研究论文 本研究开发了一个名为OLSIA的开放软件,用于腰椎图像分析,实现无代码的腰椎分割、分级和椎间盘高度指数计算,并在多个外部数据集上进行了验证 开发了首个集成深度学习模型的无代码腰椎图像分析软件,支持自动化分割、分级和DHI计算,并在6个不同地理区域的外部数据集上进行了鲁棒性评估 研究主要基于T2加权矢状位切片,可能未涵盖所有腰椎成像模态;尽管在多个数据集中验证,但样本量仍有限 开发一个开放、用户友好的软件工具,以加速腰椎图像的放射组学和分析工作流程 腰椎图像,特别是T2加权矢状位切片中的L1至S1椎体和L1/2至L5/S1椎间盘 数字病理 脊柱疾病 深度学习,图像增强(直方图裁剪、中值滤波、几何缩放) 深度学习模型 医学图像(T2加权MRI切片) 训练使用NFBC1966数据集,外部评估从6个数据集中各采样30名参与者,总计180名外部样本 NA NA Dice相似系数,Bland-Altman分析,配对t检验 NA
3685 2025-12-13
Prediction of neoadjuvant therapy response to HER2-positive and triple-negative breast cancer: a multicenter proof-of-concept study
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本研究开发了一个基于乳腺X线摄影、多参数MRI和临床特征的深度学习框架,用于预测HER2阳性和三阴性乳腺癌患者新辅助治疗后的病理完全缓解 提出了一种结合多模态影像(ADC、DCE-MRI、SPAIR T2WI、DWI、CC、MLO)和临床特征的融合模型,用于预测乳腺癌新辅助治疗反应 回顾性研究,样本量相对有限(359例),且仅来自两个机构,可能存在选择偏倚 预测HER2阳性和三阴性乳腺癌患者新辅助治疗后的病理完全缓解 HER2阳性和三阴性乳腺癌患者 数字病理 乳腺癌 乳腺X线摄影,多参数MRI(包括ADC、DCE-MRI、SPAIR T2WI、DWI) 深度学习 影像(乳腺X线摄影、MRI),临床特征 359名乳腺癌患者(来自两个机构) NA DenseNet169-CBAM, Multi-Layer Perceptron AUC, 准确率, 敏感性, 特异性 NA
3686 2025-12-13
An Interpretable Hybrid AI Model for Breast Fine Needle Aspiration Cytology Image Classification
2025-Dec-12, Journal of medical systems IF:3.5Q2
研究论文 本文提出了一种用于乳腺细针穿刺细胞学图像分类的可解释混合AI模型 探索了18种混合架构,结合深度学习特征提取器与机器学习分类器,并利用Grad-CAM实现模型可解释性,获得了95%的临床验证率 研究为概念验证性质,数据来源于两个中心,样本量相对有限 开发一种高精度、可解释的混合AI模型,用于乳腺细针穿刺细胞学图像的二元分类 乳腺细针穿刺细胞学图像 数字病理学 乳腺癌 细针穿刺细胞学 混合模型 图像 原始数据集427张图像(152张良性,275张恶性),数据增强后扩展至2866张图像(1216张良性,1650张恶性) NA Inception-V3, MobileNet-V2, DenseNet-121, Support Vector Machine, Decision Tree, k-Nearest Neighbours 准确率, 灵敏度, 特异性 NA
3687 2025-12-13
Beyond Implicit Mapping: Advancing Generative Models Through Smoothed Optimal Transport
2025-Dec-11, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种通过平滑最优传输来提升生成模型的方法,以解决传统模型中映射关系隐式化的问题 引入Nesterov平滑技术平滑Brenier势能,从而推导出显式最优传输映射,构建了更先进的生成模型 未在摘要中明确说明 提升生成模型的解释性和条件生成能力,同时提高生成效率 生成模型中的最优传输映射 机器学习 NA 最优传输(OT)、Nesterov平滑技术 生成模型 NA NA NA NA NA NA
3688 2025-12-13
Clinically Generalizable Low-Dose CT Denoising for Pediatric Imaging via Enhanced Diffusion Posterior Sampling
2025-Dec-11, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种增强的扩散后验采样框架,用于儿科低剂量CT图像的降噪,以提升临床泛化能力 提出结合一步去噪U-Net与无条件扩散模型的E-DPS框架,利用U-Net提供结构约束,扩散模型增强真实感与泛化性,并引入中间阶段初始化策略以减少采样步数 未明确说明在极低剂量或运动伪影严重情况下的性能,以及模型在不同医疗机构设备间的泛化能力验证 开发一种具有强临床泛化能力的低剂量CT图像降噪方法,以减少儿科患者的辐射暴露 儿科患者的全身正电子发射断层扫描与计算机断层扫描(PET/CT)图像 计算机视觉 儿科疾病 计算机断层扫描(CT) 扩散模型, U-Net 医学图像(CT图像) NA NA U-Net 峰值信噪比(PSNR) NA
3689 2025-12-13
Graph Attention Fusion With Kolmogorov-Arnold Network for Drug-Gene Interaction Prediction
2025-Dec-11, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出一种结合图注意力融合与Kolmogorov-Arnold网络的方法dgKAN,用于预测药物-基因相互作用 通过构建可解释的KAN网络解析药物-基因关系中的异构注意力相互影响,并融合全局与局部注意力机制 NA 预测药物-基因相互作用以辅助疾病治疗的药物开发 药物与基因 机器学习 NA NA Transformer, GNN 图数据 NA NA Transformer, GNN, KAN NA NA
3690 2025-12-13
Reinforcement Learning-based Sequential Parameter Tuning for Image Signal Processing
2025-Dec-11, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种基于强化学习的图像信号处理参数优化模型,用于自动调整硬件ISP参数以生成高质量RGB图像 首次将硬件ISP参数调优建模为序列优化问题,并引入单智能体强化学习和协作多智能体强化学习框架,探索ISP模块序列结构和参数耦合关系对调优过程的影响 未明确说明模型在极端光照或噪声条件下的鲁棒性,且训练数据需求虽少但具体数据量未详细说明 优化硬件图像信号处理参数调优过程,提高图像质量并适应不同下游任务 硬件ISP模块及其可调参数 计算机视觉 NA 强化学习 强化学习 图像 NA NA SARL-ISP, MARL-ISP 定量指标, 定性评估 NA
3691 2025-12-13
A Multi-modal Contrastive Learning Framework for Cyclic Peptide Permeability Prediction
2025-Dec-11, IEEE transactions on computational biology and bioinformatics
研究论文 本文提出了一个名为MCPerm的多模态深度学习框架,通过整合1D SMILES、2D拓扑和3D几何信息来预测环肽的细胞膜渗透性 提出了一种新颖的多模态共享和对比学习策略,通过微调预训练的肽语言模型、使用参数共享图变换器以及双对比学习机制,实现了模态内和模态间的表示一致性,从而提升了预测准确性 未明确提及模型在更大规模或更复杂数据集上的泛化能力,以及计算资源消耗的具体分析 开发一个计算框架以准确预测环肽的细胞膜渗透性,从而加速可渗透细胞膜的环肽药物的理性设计与发现 环肽分子 机器学习 NA 深度学习,对比学习 Transformer SMILES序列,拓扑结构,几何结构 基于基准PAMPA数据集及三个独立测定数据集(Caco-2, MDCK, RRCK),具体样本数量未明确说明 未明确指定,可能涉及PyTorch或TensorFlow 图变换器,预训练肽语言模型 未明确列出具体指标,但提及达到了最先进的性能 未明确说明
3692 2025-12-13
Unveiling Fine-grained Deceptive Patterns in Multi-modal Fake News: An Explainable Neuro-Symbolic Framework with LVLMs
2025-Dec-11, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种可解释的神经符号框架GE-NSLM,用于检测多模态假新闻并揭示其背后的细粒度欺骗模式 从解释假新闻如何被制造的角度出发,首次定义了四种欺骗模式,并提出了结合大型视觉语言模型与符号逻辑规则的神经符号潜在模型 未明确说明模型在跨领域或新兴欺骗模式上的泛化能力,也未讨论计算效率问题 开发一种既能准确检测多模态假新闻,又能提供可解释性洞察(即欺骗模式)的方法 多模态(图文)假新闻 自然语言处理,计算机视觉 NA 大型视觉语言模型,变分推断,弱监督学习 神经符号模型,潜在变量模型 多模态数据(图像和文本) NA NA GE-NSLM(神经符号潜在模型) 竞争性性能(具体指标未说明) NA
3693 2025-12-13
Is this neonate feeling pain? Leveraging clinical knowledge towards high-precision Large Language Model-based neonatal pain assessment
2025-Dec-11, Pediatric research IF:3.1Q1
研究论文 本研究首次应用视觉语言模型进行新生儿自动疼痛评估,通过设计新颖的提示类别来利用模型的潜在临床知识或指导其评估特定面部特征,实现了高精度性能 首次将视觉语言模型应用于新生儿自动疼痛评估,并设计了基于临床知识和面部特征的提示策略,无需微调即可实现高精度 模型在评估临床相关面部特征时召回率较低(40.1%),且依赖于提示设计,可能受限于预训练知识 开发一种客观的新生儿疼痛评估方法,以替代当前主观的评估量表 新生儿,特别是在重症监护中经历疼痛程序的婴儿 计算机视觉 NA 视觉语言模型 VLM 图像 NA NA NA 精确度, 召回率 NA
3694 2025-12-13
Real-time generation of renal artery hemodynamic parameters using a point cloud-based deep learning model
2025-Dec-11, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
研究论文 本研究提出了一种结合Mamba状态空间建模和分层点云处理的深度学习框架,用于实时预测肾动脉血流动力学参数 创新性地将Mamba的选择性机制与PointNet++结合,用于点云数据上的血流动力学预测,实现了计算效率的显著提升 NA 开发一种实时生成肾动脉血流动力学参数的深度学习方法,以辅助肾动脉狭窄的临床评估 三维肾动脉模型及其血流动力学参数 数字病理学 心血管疾病 计算流体动力学模拟 深度学习模型 点云数据 NA NA PointNet++, Mamba NA NA
3695 2025-12-13
PatternFusion: a hybrid model for pattern recognition in time-series data using ensemble learning
2025-Dec-09, Scientific reports IF:3.8Q1
研究论文 提出了一种名为PatternFusion的新型集成框架,用于时间序列数据的模式识别 通过动态注意力驱动融合机制,无缝集成BiLSTM、CNN和LightGBM,实现了统计模型与深度学习结构的协同;引入了自适应注意力融合、多尺度时间特征编码、显式置信度量化和时间后处理等关键创新 NA 克服经典时间序列分析的缺点,实现高性能、可解释且能进行多尺度时间检测的模式识别 时间序列数据 机器学习 NA NA BiLSTM, CNN, LightGBM 时间序列数据 NA NA BiLSTM, CNN F1-score, AUC, EER NA
3696 2025-12-13
Gaussian mixture model for enhancing the quality of transmission estimation in optical networks: a machine learning approach
2025-Dec-09, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于高斯混合模型的机器学习方法,用于提升光网络中传输质量估计的准确性 采用高斯混合模型算法来预测未知光路径的误码率和信噪比,结合阈值、流量和调制格式等参数,实现了高精度的传输质量估计 模型仅在韩国网络拓扑特征上进行训练和测试,未在其他网络拓扑或实际环境中验证其泛化能力 开发一种基于机器学习的光网络传输质量估计方法,以优化光纤通信系统 光网络中的传输路径,特别是未知光路径的质量参数 机器学习 NA 高斯混合模型 GMM 网络拓扑特征数据 NA NA 高斯混合模型 AUC, 准确率, F1分数, Brier分数, 期望校准误差 NA
3697 2025-12-13
Multi-View Deep Learning for Mandibular Landmark Localization
2025-Dec-09, Journal of dentistry IF:4.8Q1
研究论文 本研究开发并验证了一种新颖的多视图深度学习框架,用于提高CBCT衍生的3D下颌骨表面模型上解剖标志点定位的准确性和效率 提出了一种多视图堆叠沙漏卷积神经网络(MVSH-CNN),直接在基于STL的下颌骨模型上进行半自动3D标志点定位,显著优于传统的基于配准的方法 研究样本仅来自成年汉族个体,样本量相对较小(140例),可能限制模型的泛化能力 开发并验证一种新颖的多视图深度学习框架,以增强下颌骨解剖标志点定位的准确性和效率 从锥形束计算机断层扫描(CBCT)重建的3D下颌骨表面模型 计算机视觉 颌面部疾病 锥形束计算机断层扫描(CBCT) CNN 3D表面模型(STL格式) 140例成年汉族个体的下颌骨扫描(100例用于训练/验证,40例用于独立测试,其中20例正常,20例不对称) NA 多视图堆叠沙漏卷积神经网络(MVSH-CNN) 欧几里得距离误差,计算时间 NA
3698 2025-12-13
A Review of Topological Data Analysis and Topological Deep Learning in Molecular Sciences
2025-Dec-08, Journal of chemical information and modeling IF:5.6Q1
综述 本文全面回顾了拓扑数据分析(TDA)和拓扑深度学习(TDL)在分子科学中的发展、方法和应用 综述了从早期定性工具到先进定量和预测模型的TDA演变,重点介绍了持久同调、持久拉普拉斯算子及拓扑机器学习等创新点 讨论了当前TDA方法的局限性,并概述了未来方向,如与先进AI模型的整合及新拓扑不变量的开发 旨在为研究人员利用拓扑学在分子科学中的力量提供基础性参考 分子科学中的复杂分子数据,包括生物分子稳定性、蛋白质-配体相互作用、药物发现、材料科学、拓扑序列分析和病毒进化等领域 机器学习 NA 拓扑数据分析(TDA),拓扑深度学习(TDL) NA 复杂分子数据 NA NA NA NA NA
3699 2025-12-13
eRMSF: A Python Package for Ensemble-Based RMSF Analysis of Biomolecular Systems
2025-Dec-08, Journal of chemical information and modeling IF:5.6Q1
研究论文 介绍了一个名为eRMSF的Python软件包,用于对生物分子系统进行基于集合的均方根涨落分析 eRMSF扩展了传统的分子动力学轨迹分析,能够处理由不同方法生成的集合,如MD模拟、BioEmu深度学习工具、子采样AlphaFold2等,提供了统一的框架来评估模拟和预测结构中的残基或原子涨落 NA 开发一个快速且用户友好的工具,用于分析生物分子系统的分子灵活性和动力学 生物分子系统 计算生物学 NA 均方根涨落分析 NA 结构集合数据 NA Python, MDAnalysis NA NA NA
3700 2025-12-13
Benchmarking Sequence-Based Compound-Protein Interaction Prediction through Constructing a Debiased Data Set CDPN
2025-Dec-08, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文提出了一种名为CDPN的去偏数据构建协议,用于基准测试基于序列的化合物-蛋白质相互作用预测模型 通过化合物聚类降采样和从未探索化学空间生成推定负样本,构建去偏CPI基准数据集,解决了现有数据集中分子支架过代表和标签分布不平衡导致的模型泛化问题 在PDBbind上的系统评估揭示了注意力可解释性存在关键局限性 准确预测化合物-蛋白质相互作用以促进药物发现 化合物-蛋白质相互作用 机器学习 NA NA 深度学习模型 序列数据 NA NA KPGT-Ankh NA NA
回到顶部