深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25256 篇文献,本页显示第 3721 - 3740 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
3721 2025-05-01
Leveraging multi-source data and teleconnection indices for enhanced runoff prediction using coupled deep learning models
2025-Apr-27, Scientific reports IF:3.8Q1
research paper 本研究通过结合统计和深度学习方法,提出了两种创新的耦合模型SRA-SVR和SRA-MLPR,以提高径流预测的准确性和稳定性 结合了统计和深度学习方法的优势,利用逐步回归分析处理高维数据和多重共线性,同时整合了80个大气环流指数作为遥相关变量 研究仅以雅砻江流域为案例进行模型验证,未在其他流域进行广泛测试 提高中长期的径流预测准确性,以支持洪水控制、干旱恢复、水资源开发和生态改善 雅砻江流域的径流数据 machine learning NA Stepwise Regression Analysis (SRA), Support Vector Regression (SVR), Multi-Layer Perceptron Regression (MLPR), SHAP analysis SRA-SVR, SRA-MLPR hydrological data, atmospheric circulation indices 雅砻江流域的径流数据及80个大气环流指数
3722 2025-05-01
Sweet pepper yield modeling via deep learning and selection of superior genotypes using GBLUP and MGIDI
2025-Apr-27, Scientific reports IF:3.8Q1
研究论文 通过深度学习和GBLUP、MGIDI方法对甜椒产量进行建模并筛选优良基因型 结合卷积神经网络(CNN)模型与基因组最佳线性无偏预测(GBLUP)和多性状基因型-理想型距离指数(MGIDI),有效预测甜椒产量并筛选优良基因型 研究仅涉及29个甜椒种质,样本量较小 提高甜椒产量预测和优良基因型筛选的效率 甜椒(Capsicum annuum L.)种质 数字农业 NA ISSR标记、深度学习 CNN、GBLUP、MGIDI 形态性状数据、基因组数据 29个甜椒种质,每个种质3个重复
3723 2025-05-01
General retinal image enhancement via reconstruction: Bridging distribution shifts using latent diffusion adaptors
2025-Apr-26, Medical image analysis IF:10.7Q1
研究论文 提出了一种通用的视网膜图像增强方法,通过分解为重建和适应阶段来提高泛化能力和灵活性 将增强任务分解为重建和适应阶段,利用自监督训练和预训练权重,提高了潜在扩散模型在视网膜图像增强中的可行性 方法在特定数据集和退化条件下的泛化能力仍有待进一步验证 提高视网膜图像增强的泛化能力和灵活性 视网膜图像 计算机视觉 NA 潜在扩散模型 自编码器和扩散网络 图像 未明确提及具体样本数量,但使用了大量公共数据集
3724 2025-05-01
Using longitudinal data and deep learning models to enhance resource allocation in home-based medical care
2025-Apr-26, International journal of medical informatics IF:3.7Q2
研究论文 本研究利用纵向数据和深度学习模型优化家庭医疗资源分配 首次比较了三种深度学习模型(Transformer、LSTM和GRU)在家庭医疗阶段预测中的应用,并确定了最佳预测模型 研究数据仅来自台北市立医院,可能影响模型的泛化能力 探索人工智能在预测家庭医疗阶段中的应用,以优化医疗资源分配 4343名平均年龄85.04±11.47岁的患者 机器学习 老年病 深度学习 Transformer, LSTM, GRU 医疗记录数据 4343名患者的住院、门诊和家庭医疗记录(2015-2021年)
3725 2025-05-01
Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning
2025-Apr-25, Circulation journal : official journal of the Japanese Circulation Society IF:3.1Q2
research paper 开发了一种基于深度学习的多模态模型,用于预测急性肺栓塞患者的短期死亡率 提出了一种新型多模态深度学习模型(mmDL),结合影像学和临床/人口统计学数据,显著优于现有的PESI评分 样本量相对较小(207例患者),可能影响模型的泛化能力 优化急性肺栓塞患者的治疗策略并改善患者预后 急性肺栓塞患者 digital pathology cardiovascular disease 对比增强多排计算机断层扫描 CNN, Transformer 影像数据、临床/人口统计学数据 207例急性肺栓塞患者(其中53例死亡)
3726 2025-05-01
[Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation]
2025-Apr-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
研究论文 本研究提出了一种结合黎曼空间滤波和领域自适应的方法(RSFDA),用于提高跨会话运动想象脑电信号(MI-EEG)分类的准确性和效率 通过多模块协作框架解决源域和目标域数据分布不一致的问题,提升了跨会话MI-EEG分类模型的泛化能力 在复杂迁移学习场景中的适用性仍需进一步研究 提高跨会话运动想象脑电信号(MI-EEG)分类的准确性和效率 运动想象脑电信号(MI-EEG) 脑机接口技术 NA 黎曼空间滤波和领域自适应 RSFDA 脑电信号(EEG) 三个公共数据集
3727 2025-05-01
[Research progress in motor assessment of neurodegenerative diseases driven by motion capture data]
2025-Apr-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
review 本文综述了基于运动捕捉数据的神经退行性疾病运动评估的最新研究进展 将神经退行性疾病运动评估方法按特征提取和处理方式分为三类,并比较分析了各类方法的技术要点和特点 未提及具体研究样本量及数据集的局限性 探讨神经退行性疾病运动评估的研究进展与发展趋势 神经退行性疾病患者的运动功能评估 digital pathology geriatric disease motion capture machine learning, deep learning motion data NA
3728 2025-05-01
Explainable AI for sharp injury identification using transfer learning with pre-trained deep neural networks
2025-Apr-22, Forensic science international IF:2.2Q1
research paper 研究使用预训练的深度神经网络和迁移学习技术,开发可解释的AI模型,用于自动识别和分类锐器伤 首次将可解释AI技术应用于法医锐器伤分类,并比较AI模型与法医病理学家的分类效果 对砍伤的分类准确率较低(30.0%),且样本量不平衡可能影响模型性能 开发自动识别和分类锐器伤的AI方法,支持法医损伤分类 锐器伤照片(刺伤、砍伤和割伤) computer vision NA transfer learning ResNet50, GoogLeNet, ShuffleNet-V2 image 1161张训练照片(723刺伤、314砍伤、124割伤)和212张外部测试照片
3729 2025-05-01
Privacy-Preserving Federated Learning Framework for Multi-Source Electronic Health Records Prognosis Prediction
2025-Apr-09, Sensors (Basel, Switzerland)
研究论文 提出了一种名为MultiProg的隐私保护联邦学习框架,用于多源电子健康记录的预后预测 采用多通道架构和特征校准机制,确保在机构间异构特征集下的稳健性能,同时保护敏感患者信息 未提及具体样本量及参与机构数量,可能影响结果的可推广性 解决临床预测系统中安全且隐私保护的健康状况表示学习问题 多源电子健康记录 机器学习 NA 联邦学习 深度学习模型 电子健康记录 NA
3730 2025-05-01
Lightweight deep learning algorithm for real-time wheat flour quality detection via NIR spectroscopy
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究提出了一种轻量级卷积神经网络,用于通过近红外光谱实时检测小麦粉质量 结合Ghost bottlenecks、外部注意力模块和Kolmogorov-Arnold网络,增强特征提取并提高预测准确性 未提及具体样本多样性或模型在其他食品质量检测中的泛化能力 开发高效、非破坏性的小麦粉质量实时监测工具 小麦粉的质量参数(蛋白质和水分含量) 机器学习 NA 近红外光谱(NIR) 轻量级CNN 光谱数据 未明确提及具体样本数量
3731 2025-05-01
Determination and visualization of moisture content in Camellia oleifera seeds rapidly based on hyperspectral imaging combined with deep learning
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究基于高光谱成像和深度学习技术,快速测定和可视化油茶籽的水分含量 提出了一种利用粒子群优化算法(PSO)在卷积神经网络回归(CNNR)模型中搜索最优超参数的方法,并开发了最优混合预测模型PSO-CNN-SVR NA 探索利用可见近红外高光谱成像(VNIR-HSI)结合深度学习(DL)方法检测油茶籽水分含量的可行性 油茶籽 计算机视觉 NA 可见近红外高光谱成像(VNIR-HSI) 卷积神经网络回归(CNNR)、支持向量机回归(SVR)、AlexNet 图像 NA
3732 2025-05-01
Rapid identification of horse oil adulteration based on deep learning infrared spectroscopy detection method
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究提出了一种基于深度学习和红外光谱技术的马油掺假快速检测方法 首次将红外光谱与深度学习结合用于马油掺假的快速检测,并优化了ResNet模型在该应用中的性能 仅测试了黄油、羊油和猪油三种掺假物质,未涵盖其他可能的掺假物 建立一种快速、准确的马油掺假检测方法 马油及其掺假混合物(黄油、羊油、猪油) 机器学习 NA 红外光谱技术 ResNet 红外光谱数据 591×3601组不同掺假比例(5%-50%)的红外光谱数据
3733 2025-05-01
Identifying mating events of group-housed broiler breeders via bio-inspired deep learning models
2025-Apr-04, Poultry science IF:3.8Q1
研究论文 开发深度学习模型识别群养肉种鸡的交配行为 结合生物特征和鸟只数量变化,利用深度学习模型自动识别交配行为,显著提高了处理速度 交配事件识别在不同时间段和鸟龄间存在波动,受鸟只重叠、聚集密度和遮挡影响 优化肉种鸡的繁殖效率和生产力 罗斯708品种的肉种鸡(20只母鸡和2-3只公鸡) 计算机视觉 NA 深度学习 YOLOv7, YOLOv8, DeepSORT, StrongSORT, ByteTrack, SAM2, YOLOv8-segmentation, Track Anything 图像 20只母鸡和2-3只公鸡(56周龄)在四个实验栏中监测
3734 2025-05-01
Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer
2025-Apr, The American journal of pathology
research paper 该研究利用人工智能在计算病理学中评估乳腺癌缺氧情况,通过弱监督深度学习模型检测H&E染色全切片图像中与缺氧相关的形态变化 首次将弱监督深度学习模型应用于常规H&E染色切片中缺氧相关形态变化的检测,无需额外基因表达检测 研究仅基于乳腺癌样本,模型在其他肿瘤类型中的适用性尚待验证 开发一种基于人工智能的方法来检测乳腺癌中的缺氧诱导形态变化 乳腺癌原发部位的H&E染色全切片图像 digital pathology breast cancer H&E染色全切片成像 HypOxNet (弱监督深度学习模型) image 1016例乳腺癌原发部位样本
3735 2025-05-01
Multi-stain deep learning prediction model of treatment response in lupus nephritis based on renal histopathology
2025-Apr, Kidney international IF:14.8Q1
研究论文 本研究开发了一种基于肾脏组织病理学的多染色深度学习模型,用于预测狼疮性肾炎患者的治疗反应 首次将深度学习应用于多染色肾脏活检切片,整合四种染色模型构建多染色预测模型,性能优于传统临床病理参数 需要进一步验证才能在临床实践中实施 开发预测狼疮性肾炎患者治疗反应的工具 狼疮性肾炎患者 数字病理学 狼疮性肾炎 深度学习 多染色集成模型 数字病理切片图像 开发队列245名患者(880张数字切片),外部测试队列71名患者(258张数字切片)
3736 2025-05-01
Fluorescence images of skin lesions and automated diagnosis using convolutional neural networks
2025-Apr, Photodiagnosis and photodynamic therapy IF:3.1Q2
研究论文 该研究探讨了使用卷积神经网络(CNN)对皮肤病变的荧光图像进行自动诊断的潜力 首次使用智能手机采集的荧光图像数据集FLUO-SC进行皮肤病变分类,并展示了荧光图像在分类性能上与临床图像相当 缺乏公开的荧光图像数据集,且样本量相对较小(1,563张图像) 探索荧光宽场成像技术在皮肤癌自动诊断中的应用 皮肤病变的荧光图像 计算机视觉 皮肤癌 荧光宽场成像 CNN 图像 1,563张荧光图像
3737 2025-05-01
WALINET: A water and lipid identification convolutional neural network for nuisance signal removal in   1 H $$ {}^1\mathrm{H} $$ MR spectroscopic imaging
2025-Apr, Magnetic resonance in medicine IF:3.0Q2
research paper 提出了一种名为WALINET的卷积神经网络,用于在质子磁共振波谱成像中去除水和脂质干扰信号 首次将监督神经网络应用于MRSI处理中的水和脂质信号去除任务,相比传统方法具有更快的处理速度和更好的性能 未提及具体的研究局限性 开发快速有效的方法用于高分辨率全脑质子磁共振波谱成像中的水和脂质信号去除 全脑质子磁共振波谱成像数据 医学影像处理 NA 质子磁共振波谱成像(1H-MRSI) 改进的Y-NET网络(CNN) 磁共振波谱数据 模拟数据和体内全脑MRSI数据(健康受试者和患者)
3738 2025-05-01
Incorporating spatial information in deep learning parameter estimation with application to the intravoxel incoherent motion model in diffusion-weighted MRI
2025-Apr, Medical image analysis IF:10.7Q1
research paper 该研究提出了一种结合空间信息的深度学习方法,用于扩散加权磁共振成像中的参数估计,特别是在体素内不相干运动模型中 通过训练神经网络在包含相邻体素间直接相关性的合成数据块上,有效利用了空间信息,提高了参数估计的准确性 研究主要基于合成数据和少量健康志愿者的体内数据,需要更多临床数据验证 提高扩散加权磁共振成像中模型参数估计的准确性 扩散加权磁共振成像数据 医学图像分析 NA 扩散加权磁共振成像(DWI) attention模型, CNN 医学图像 12次重复扫描的健康志愿者数据
3739 2025-05-01
Automatic Segmentation of Vestibular Schwannoma From MRI Using Two Cascaded Deep Learning Networks
2025-Apr, The Laryngoscope
研究论文 本文介绍了一种结合两个卷积神经网络(CNN)的新模型,用于通过深度学习自动分割和检测MRI中的前庭神经鞘瘤(VS),以提高自动分割的性能 提出了一种顺序连接两个UNet并结合空间注意力机制的新模型,用于改进前庭神经鞘瘤的自动分割性能 未提及具体的数据集规模或模型在其他类型肿瘤上的泛化能力 提高前庭神经鞘瘤(VS)在MRI中的自动分割和检测性能 前庭神经鞘瘤(VS) 数字病理学 前庭神经鞘瘤 MRI(对比增强T1和高分辨率T2加权) UNet(2D、2.5D、3D) 图像 公共和私人数据集(具体数量未提及)
3740 2025-05-01
Overfit detection method for deep neural networks trained to beamform ultrasound images
2025-Apr, Ultrasonics IF:3.8Q1
研究论文 提出一种检测深度神经网络在超声图像波束成形任务中过拟合的方法 仅需网络架构和训练权重即可检测过拟合,无需耗时重新训练或额外测试数据 方法仅在三种人工输入(零、一和高斯噪声)上验证,未在更广泛数据上测试 开发无需额外测试数据即可检测深度神经网络过拟合的方法 用于超声图像波束成形的深度神经网络 计算机视觉 NA 深度神经网络训练与评估 DNN 超声图像 多中心数据训练的三种DNN模型
回到顶部