深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 38773 篇文献,本页显示第 3801 - 3820 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
3801 2025-12-12
Multisequence MRI-driven assessment of PD-L1 expression in non-small cell lung cancer: a pilot study
2025-Dec-11, Biomedical physics & engineering express IF:1.3Q3
研究论文 本研究开发并验证了一种基于多序列MRI的非侵入性管道,用于评估非小细胞肺癌中的PD-L1表达 结合放射组学和深度学习方法,利用IVIM参数图和T1-VIBE MRI进行PD-L1表达的无创评估 样本量较小(43例患者),属于初步研究 开发一种非侵入性方法,用于评估非小细胞肺癌中的PD-L1表达 非小细胞肺癌患者 数字病理学 肺癌 MRI, IVIM参数图, T1-VIBE Logistic Regression, Random Forest, XGBoost MRI图像 43例非小细胞肺癌患者 Scikit-learn, XGBoost NA AUC NA
3802 2025-12-12
Block Matching Based Speckle Tracking Echocardiography: Clinical Applications and Research Outlook in a Deep Learning Context
2025-Dec-11, Journal of imaging informatics in medicine
研究论文 本文提出了一种临床适用的斑点追踪方法BiDiBM,用于评估心肌纵向应变,并在合成和真实世界超声心动图数据上验证了其准确性和可靠性 引入双向块匹配(BiDiBM)方法,通过新颖的处理流程提升了传统块匹配方法的跟踪准确性和鲁棒性 深度学习方法因需要大量标注数据而临床部署受限,传统方法仍不可或缺;真实世界验证规模较小 开发并验证一种临床适用的斑点追踪超声心动图方法,以评估心脏功能障碍 超声心动图中的斑点区域,用于心肌纵向应变测量 计算机视觉 心血管疾病 斑点追踪超声心动图(STE) 块匹配(BM) 超声心动图图像 开源合成超声心动图数据集(四种场景)和小规模真实世界验证 NA 双向块匹配(BiDiBM) 均方根误差(RMSE), 互相关函数的零滞后点(ZERO-LAG) NA
3803 2025-12-12
AFP-GFuse: an antifungal peptide identification model with structural information fusion via multi-graph neural networks and cross-attention mechanism
2025-Dec-11, Molecular diversity IF:3.9Q2
研究论文 本研究开发了一种名为AFP-GFuse的深度学习模型,用于识别抗真菌肽,通过融合序列和结构信息以及三种互补的图神经网络,并采用分层交叉注意力机制来动态对齐和融合多图特征表示 构建了最先进且全面的数据集,并开发了集成序列和结构信息与三种互补图神经网络的深度学习模型,设计了分层交叉注意力机制以动态对齐和融合多图特征表示,有效解决了现有方法忽略空间特征和单图神经网络特征偏差的问题 未明确提及具体局限性,但可能包括模型对数据质量的依赖或泛化能力需进一步验证 开发高效且准确的抗真菌肽识别模型,以替代传统低效且昂贵的实验室方法 抗真菌肽 自然语言处理 NA 深度学习 GNN 序列数据, 结构数据 NA NA 多图神经网络, 交叉注意力机制 准确率 NA
3804 2025-12-12
A Deep Learning Model for Heart Sound Classification Fusing Time-Frequency Features
2025-Dec-10, IEEE transactions on bio-medical engineering
研究论文 本文提出了一种融合时频特征的双分支深度学习模型,用于心音信号的自动分类,旨在提高心血管疾病的早期诊断准确性 模型通过双向交叉注意力融合模块,首次有效整合了时域和频域特征,并采用迁移学习策略以增强在小数据集上的鲁棒性 模型在更广泛或噪声更大的临床数据集上的泛化能力尚未验证,且计算复杂度可能较高 开发一个能融合时域和频域特征的心音分类模型,以提升心血管疾病的自动诊断性能 心音图(PCG)信号 机器学习 心血管疾病 NA CNN, Transformer, ResNet 信号(心音图) 基于多个公共数据集,包括2016年PhysioNet挑战赛数据集 NA 1D CNN with Transformer blocks, ResNet 准确率, F1分数 NA
3805 2025-12-12
Cross-Modality Image Registration Via Generating Aligned Image Using Reference-Augmented Framework
2025-Dec-10, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为'Register by Generation (RbG)'的深度学习框架,用于生成与固定图像结构对齐且保留移动图像细节的跨模态图像配准 引入两阶段参考增强框架,结合Patch Adaptive Instance Normalization (PAdaIN)和Deformation-Aware Cross-Attention (DACA)块,实现自监督训练,无需预对齐数据 NA 解决跨模态图像(如MR-CT、CBCT-CT)配准的挑战,生成结构对齐且细节保留的图像 跨模态图像对(如MR-CT、CBCT-CT) 计算机视觉 NA 深度学习图像合成 CNN 图像 多个未对齐数据集 NA 参考增强图像合成网络,包含PAdaIN和DACA块 结构对齐和分布一致性指标 NA
3806 2025-12-12
iDeep-cancer: Predicting Cancer-related circRNA-RBP Binding Sites Using a Hybrid Network Framework
2025-Dec-10, IEEE transactions on computational biology and bioinformatics
研究论文 本文提出了一种名为iDeep-cancer的混合网络框架,用于预测癌症相关circRNA-RBP结合位点 结合改进的DenseNet、双向门控循环单元和自注意力机制,仅使用circRNA序列进行预测,克服了现有方法特征学习不足和可扩展性差的问题 未明确说明模型在更大规模或更复杂数据集上的泛化能力 预测circRNA与RNA结合蛋白的结合位点,以促进人类疾病调控研究 circRNA序列及其与RNA结合蛋白的相互作用 自然语言处理 癌症 NA CNN, LSTM 序列数据 13个数据集 NA DenseNet, BiGRU, Self-attention NA NA
3807 2025-12-12
Development of Automated High-Throughput Digital Microscopy With Deep Learning for Enhanced Blood Smear Imaging
2025-Dec-10, Microscopy research and technique IF:2.0Q3
研究论文 本研究开发了一种基于深度学习的高通量自动数字显微镜系统,用于增强血涂片成像 结合光学组装设置与深度学习算法实现实时图像采集的自动对焦系统,并利用预训练的VGG-16和Mobile Vision Transformer模型通过迁移学习克服计算挑战 未明确提及系统在更广泛样本类型或不同放大倍数下的性能验证 设计和开发自动化高通量光学数字显微镜设备,以改进血涂片图像的扫描和捕获效率 外周血涂片玻片 数字病理学 NA 数字显微镜成像 CNN, Transformer 图像 10个外周血涂片玻片 NA VGG-16, Mobile Vision Transformer 准确率 NA
3808 2025-12-12
Reconstruction of Antarctic sea ice thickness from sparse satellite laser altimetry data via deep learning
2025-Dec-10, Scientific data IF:5.8Q1
研究论文 本研究利用深度学习技术,基于稀疏的卫星激光测高数据,重建了高时空分辨率的南极海冰厚度数据集 首次开发了基于深度学习、融合ICESat和ICESat-2稀疏沿轨激光测高数据,实现5天和12.5公里分辨率的全南极海冰厚度重建方法,并具备近实时更新能力 重建数据依赖于稀疏的卫星沿轨观测,在空间覆盖和数据插值方面可能存在不确定性,且验证主要基于有限的向上观测声纳数据 解决南极海冰厚度数据在亚月尺度和空间完整性上的长期缺失问题,以促进对大规模海冰质量平衡过程的定量理解 南极海冰厚度 机器学习 NA 卫星激光测高(ICESat, ICESat-2),向上观测声纳 深度学习模型 卫星激光测高数据,声纳观测数据 基于ICESat(2003-2009)和ICESat-2(2018-2024)的沿轨观测数据,并利用独立向上观测声纳数据进行验证 NA NA 准确性(通过与独立向上观测声纳数据和其他四套卫星及再分析数据集的比较进行定量验证),季节性周期和季节内趋势一致性 NA
3809 2025-12-12
Developing microenvironment classification models for personal exposure assessment based on global positioning system tracking data
2025-Dec-10, Journal of exposure science & environmental epidemiology
研究论文 本研究基于GPS追踪数据开发微环境分类模型,以改进个人空气污染暴露评估 结合个体移动模式和GPS信号质量信息,利用多种机器学习和深度学习方法开发微环境分类模型,并通过可解释性方法识别关键变量 研究数据主要反映韩国城市人群的季节性和日常活动模式,可能限制了模型的普适性 开发基于GPS追踪数据的微环境分类模型,以改进个人空气污染暴露评估 韩国城市人群的GPS追踪数据 机器学习 NA GPS追踪 随机森林, boosting, 深度神经网络 GPS追踪数据 来自韩国空气污染物暴露模型项目的数据 NA NA AUROC NA
3810 2025-12-12
A multi-dimensional lightweight attention-enhanced model for medical image segmentation
2025-Dec-10, Scientific reports IF:3.8Q1
研究论文 提出一种多维轻量级注意力增强模型用于医学图像分割,以解决传统CNN全局依赖建模不足和计算复杂度高的问题 集成全维度动态卷积和掩码注意力机制,在空间、通道和核数量维度进行自适应建模,以较低计算成本扩大有效感受野并聚焦关键边界 未明确说明模型在更复杂或罕见病变类型上的泛化能力,以及在实际临床部署中的具体资源需求 开发一种高效且准确的医学图像分割方法,适用于资源受限的医疗场景 医学图像中的病变或解剖结构 计算机视觉 NA 深度学习 CNN, 注意力机制 图像 基于三个公共基准数据集 NA 多维轻量级注意力增强模型 分割精度, 推理效率 NA
3811 2025-12-12
CRLM-GAN: a feature-constrained GAN-based deep learning framework for multi-parametric MRI-based segmentation of colorectal liver metastases before and after chemotherapy
2025-Dec-10, Cancer imaging : the official publication of the International Cancer Imaging Society IF:3.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
3812 2025-12-12
Deep learning-based identification of periodontal infrabony defects with regenerative potential: A multicenter retrospective study
2025-Dec-10, Journal of periodontology IF:4.2Q1
研究论文 本研究开发了一种结合YOLO V8和nnU-Net V2的双模型深度学习框架,用于在口腔平行投照X线片上自动识别、量化牙周骨下缺损并提供手术指导 首次提出了一种结合目标检测(YOLO V8)和语义分割(nnU-Net V2)的双模型AI框架,用于牙周骨下缺损的自动化分析,并引入了基于颜色编码的临床指南对齐手术推荐系统 研究为回顾性多中心研究,未来需要前瞻性研究进一步验证;模型在外部数据集上进行了测试,但样本量(n=93)相对有限 开发一个自动化、客观的AI系统,以改进牙周骨下缺损的影像学评估和再生手术规划 牙周骨下缺损 数字病理学 牙周病 口腔平行投照X线摄影 CNN 图像 580张口腔平行投照X线片(内部数据集387张,外部数据集93张),来自三家医疗机构 PyTorch YOLO V8, nnU-Net V2 Dice系数, 平均绝对误差, 灵敏度, 特异度, F1分数, 准确率 NA
3813 2025-12-12
Accelerating Prostate Cancer Detection Through Histopathological Image Analysis Using Artificial Intelligence
2025-Dec-10, Microscopy research and technique IF:2.0Q3
研究论文 本研究提出了一种结合CNN集成与Vision Transformer的混合深度学习框架,用于加速前列腺癌的病理图像检测 通过交叉注意力融合模块整合局部与全局特征,并利用知识蒸馏实现轻量级网络,在保持高精度的同时提升临床部署效率 模型计算复杂度较高,对计算资源要求较大 利用人工智能加速前列腺癌的早期检测与诊断 前列腺癌病理图像 数字病理学 前列腺癌 组织病理学图像分析 CNN, Transformer 图像 使用公开的PANDA数据集进行训练和测试 PyTorch, TensorFlow VGG-16, DenseNet-121, AlexNet, Vision Transformer (ViT) 准确率, 真阳性率, 真阴性率, 精确率, F1分数, 假阴性率, 假阳性率 GPU(具体型号未提及), 评估了参数量、FLOPs、GPU内存和推理时间
3814 2025-12-12
An interdisciplinary approach in teaching RNA secondary structure prediction to first-year undergraduate students using an automated deep learning RNA 3D model prediction tool
2025-Dec-09, Journal of microbiology & biology education IF:1.6Q2
研究论文 本文介绍了一种面向大一本科生的跨学科教学方法,利用自动化深度学习工具trRosettaRNA预测siRNA的二级结构,以整合人工智能与RNA科学概念 首次将自动化深度学习RNA 3D结构预测工具trRosettaRNA引入本科教学,设计无湿实验室的探究式研讨会,简化AI与RNA科学的跨学科整合 活动仅针对大一健康科学本科生设计,可能未覆盖高级或专业内容;且依赖于特定工具trRosettaRNA,未涉及其他AI方法比较 开发一种跨学科教学方法,将人工智能工具应用于RNA二级结构预测教学,以培养下一代科学家在生物技术领域使用AI平台的能力 大一健康科学本科生 机器学习 NA RNA二级结构预测,siRNA设计 深度学习 RNA序列数据 NA NA trRosettaRNA NA NA
3815 2025-12-12
panHiTE: a comprehensive and accurate pipeline for TE detection in large-scale population genomes
2025-Dec-09, Plant communications IF:9.4Q1
研究论文 本文介绍了一种用于大规模群体基因组中检测转座元件(TE)的综合且准确的工具panHiTE 提出动态更新的全局TE库以提高计算效率并适用于超大基因组;通过重新比对候选元件至群体基因组来准确重建全长TE;集成新型深度学习检测算法以提升LTR-RT检测的敏感性和精确度;采用容错冗余去除算法高效分组不同家族成员 未明确说明 开发一种用于大规模群体基因组中准确检测和注释转座元件(TE)的工具 植物基因组(如小麦、玉米、拟南芥)中的转座元件(TE) 生物信息学 NA 高通量测序 深度学习 基因组序列数据 26个玉米基因组和32个拟南芥种质 NA NA 敏感性,精确度 NA
3816 2025-12-12
Intelligent retinal disease detection using deep learning
2025-Dec-08, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于深度学习的自动化方法,用于使用眼底图像对多种视网膜疾病进行分类 结合了人工神经网络、MobileNetV2和DenseNet121架构,并采用主成分分析和离散小波变换进行特征提取和降维,实现了多类别视网膜疾病的高精度分类 未明确提及模型在外部验证集或临床实际应用中的泛化能力,也未讨论数据集的潜在偏差或模型的可解释性 开发一种自动化系统,以辅助眼科医生通过眼底图像准确、高效地检测和分类视网膜疾病 眼底图像,用于区分健康眼睛与患有糖尿病视网膜病变、白内障或青光眼的眼睛 计算机视觉 视网膜疾病 眼底成像 ANN, 深度学习 图像 NA NA MobileNetV2, DenseNet121 准确率 NA
3817 2025-12-12
Integrating CT-based radiomics and deep learning for invasive prediction of ground-glass nodules in lung adenocarcinoma: a multicohort study
2025-Dec-08, Insights into imaging IF:4.1Q1
研究论文 本研究旨在探索一种结合放射组学特征和深度学习表示的多实例学习框架,用于预测肺腺癌中磨玻璃结节的侵袭性 提出了一种新颖的多实例学习框架,整合了放射组学特征和深度学习表示,以预测磨玻璃结节的侵袭性,为特征融合提供了新视角 研究为回顾性分析,可能存在选择偏倚;模型性能在不同数据集上略有波动 预测肺腺癌中磨玻璃结节的侵袭性,以辅助术前临床决策 肺腺癌患者的磨玻璃结节 计算机视觉 肺癌 CT成像 多实例学习, 深度学习 CT图像 来自1182名肺腺癌患者的1247个磨玻璃结节,涵盖六家医院 NA ExtraTrees, 3D深度学习模型, 2.5D深度学习模型 AUC, 校准曲线, 决策曲线分析 NA
3818 2025-12-12
Deep learning-enhanced super-resolution diffusion-weighted liver MRI: improved image quality, diagnostic performance, and acceleration
2025-Dec-08, Insights into imaging IF:4.1Q1
研究论文 本研究探讨了深度学习重建对肝脏扩散加权成像图像质量的影响及其在区分良恶性肝脏局灶性病变方面的能力 首次将深度学习重建应用于加速采集的肝脏扩散加权成像,在将采集时间减半的同时,显著提升了图像质量和诊断性能 研究为单中心设计,且未详细说明深度学习模型的具体架构和训练细节 评估深度学习重建技术对肝脏扩散加权成像图像质量及良恶性病变鉴别诊断性能的提升效果 疑似肝脏疾病并接受肝脏MRI检查的患者 医学影像分析 肝脏疾病 扩散加权成像,深度学习重建 深度学习模型 MRI图像 193名患者(128名男性,65名女性,年龄23-81岁) NA NA AUC, 信噪比, 对比噪声比, 边缘上升距离, 定性Likert评分 NA
3819 2025-12-12
Mammo-AGE: deep learning estimation of breast age from mammograms
2025-Dec-08, Nature communications IF:14.7Q1
研究论文 本文提出了一种基于深度学习的方法,利用健康乳腺X光片估计乳腺的生物年龄 首次开发了基于乳腺X光片的深度学习模型来估计乳腺生物年龄,并探索其与乳腺癌风险的关系 NA 开发一种从乳腺X光片中估计乳腺生物年龄的深度学习模型,并评估其在乳腺癌风险分层和诊断中的潜力 乳腺X光片 数字病理学 乳腺癌 深度学习 CNN 图像 95,826张乳腺X光片,来自44,497名年龄在18至98岁的女性 NA NA 平均绝对误差, 风险比 NA
3820 2025-12-12
Classifying human vs. AI text with machine learning and explainable transformer models
2025-Dec-08, Scientific reports IF:3.8Q1
研究论文 本研究提出一个综合框架,结合机器学习、序列深度学习和基于Transformer的模型,用于区分人类撰写与GPT生成的文本 采用多种Transformer模型(如BERT、RoBERTa)进行对比,并结合后处理温度缩放和阈值调优以提升校准和精度,同时利用LIME和SHAP进行可解释性分析 NA 区分人类撰写与AI生成的文本,以验证内容真实性和确保语言技术的伦理使用 人类撰写和GPT生成的文本样本 自然语言处理 NA NA LSTM, GRU, BiLSTM, BiGRU, BERT, DistilBERT, ALBERT, RoBERTa 文本 20,000个样本 NA BERT, DistilBERT, ALBERT, RoBERTa 准确率 NA
回到顶部